Multiresponse maintenance modeling using desirability function and Taguchi methods

2021 ◽  
pp. 353-372
Author(s):  
Suraj Rane ◽  
Raghavendra Pai ◽  
Anusha Pai ◽  
Santosh B. Rane
2020 ◽  
Vol 17 (6) ◽  
pp. 523-539
Author(s):  
Jalpa Patel ◽  
Dhaval Mori

Background: Developing a new excipient and obtaining its market approval is an expensive, time-consuming and complex process. Compared to that, the co-processing of already approved excipients has emerged as a more attractive option for bringing better characteristic excipients to the market. The application of the Design of Experiments (DoE) approach for developing co-processed excipient can make the entire process cost-effective and rapid. Objective: The aim of the present investigation was to demonstrate the applicability of the DoE approach, especially 32 full factorial design, to develop a multi-functional co-processed excipient for the direct compression of model drug - cefixime trihydrate using spray drying technique. Methods: The preliminary studies proved the significant effect of atomization pressure (X1) and polymer ratio (microcrystalline cellulose: mannitol - X2) on critical product characteristics, so they were selected as independent variables. The angle of repose, Carr’s index, Hausner’s ratio, tensile strength and Kuno’s constant were selected as response variables. Result: The statistical analysis proved a significant effect of both independent variables on all response variables with a significant p-value < 0.05. The desirability function available in Design Expert 11® software was used to prepare and select the optimized batch. The prepared co-processed excipient had better compressibility than individual excipients and their physical mixture and was able to accommodate more than 40 percent drug without compromising the flow property and compressibility. Conclusion: The present investigation successfully proved the applicability of 32 full factorial design as an effective tool for optimizing the spray drying process to prepare a multi-functional co-processed excipient.


2020 ◽  
Vol 17 (2) ◽  
pp. 114-123
Author(s):  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
Yannis Dotsikas

Background: Mesalazine (5-aminosalicylic acid, 5-ASA) is a drug substance with an antiinflammatory activity, which is mainly used in the symptomatic treatment of diseases, such as Ulcerative Colitis, the Crohn's disease and the idiopathic inflammatory bowel disease. Mesalazine exerts its effect locally in the inflamed area of the intestine and not through systematic absorption, therefore the investigation of its release characteristics from solid pharmaceutical formulations is of great importance. Objective: The development of novel mesalazine modified release formulations with improved properties, regarding drug release in the gastrointestinal tract, by utilisation of the Design of Experiments (DoE) approach. Methods: D-optimal experimental design was applied. A Simplex Lattice mixture design was used for the development of suitable capsules containing 4 mini tablets and a D-optimal mixture design was used for compression-coated tablets, with the following characteristics: ≤10% release in 2 h, to minimize its degradation in the upper gastrointestinal tract, 20-40% release in 5 h for mesalazine administration in the small intestine, and quantitative release in 12 h for colonic delivery. The dissolution experiments were conducted in gastrointestinal-like fluids and pectinases to simulate the pectinolytic enzymes present in the colon. Results: The optimal compositions were reached via the desirability function, as a compromise to the different responses. The optimal solutions for both formulations led to colon-specific delivery of the active substance with minimal 5-ASA release in the upper gastrointestinal tract and appeared to conform with the pre-determined characteristics. Hard gelatin capsules, when filled with mini-tablets led to the aimed modified release profile, having sigmoidal characteristics and compression coated tablets led to colonic delivery. Conclusion: Two novel mesalazine formulations were developed with the desirable colonic release, by conducting a minimal number of experiments, as suggested by DoE experimental design.


Author(s):  
Joachim S. Graff ◽  
Raphael Schuler ◽  
Xin Song ◽  
Gustavo Castillo-Hernandez ◽  
Gunstein Skomedal ◽  
...  

AbstractThermoelectric modules can be used in waste heat harvesting, sensing, and cooling applications. Here, we report on the fabrication and performance of a four-leg module based on abundant silicide materials. While previously optimized Mg2Si0.3Sn0.675Bi0.025 is used as the n-type leg, we employ a fractional factorial design based on the Taguchi methods mapping out a four-dimensional parameter space among Mnx-εMoεSi1.75−δGeδ higher manganese silicide compositions for the p-type material. The module is assembled using a scalable fabrication process, using a Cu metallization layer and a Pb-based soldering paste. The maximum power output density of 53 μW cm–2 is achieved at a hot-side temperature of 250 °C and a temperature difference of 100 °C. This low thermoelectric output is related to the high contact resistance between the thermoelectric materials and the metallic contacts, underlining the importance of improved metallization schemes for thermoelectric module assembly.


Sign in / Sign up

Export Citation Format

Share Document