Application of 32 Full Factorial Design and Desirability Function for Optimizing The Manufacturing Process for Directly Compressible Multi-Functional Co-Processed Excipient

2020 ◽  
Vol 17 (6) ◽  
pp. 523-539
Author(s):  
Jalpa Patel ◽  
Dhaval Mori

Background: Developing a new excipient and obtaining its market approval is an expensive, time-consuming and complex process. Compared to that, the co-processing of already approved excipients has emerged as a more attractive option for bringing better characteristic excipients to the market. The application of the Design of Experiments (DoE) approach for developing co-processed excipient can make the entire process cost-effective and rapid. Objective: The aim of the present investigation was to demonstrate the applicability of the DoE approach, especially 32 full factorial design, to develop a multi-functional co-processed excipient for the direct compression of model drug - cefixime trihydrate using spray drying technique. Methods: The preliminary studies proved the significant effect of atomization pressure (X1) and polymer ratio (microcrystalline cellulose: mannitol - X2) on critical product characteristics, so they were selected as independent variables. The angle of repose, Carr’s index, Hausner’s ratio, tensile strength and Kuno’s constant were selected as response variables. Result: The statistical analysis proved a significant effect of both independent variables on all response variables with a significant p-value < 0.05. The desirability function available in Design Expert 11® software was used to prepare and select the optimized batch. The prepared co-processed excipient had better compressibility than individual excipients and their physical mixture and was able to accommodate more than 40 percent drug without compromising the flow property and compressibility. Conclusion: The present investigation successfully proved the applicability of 32 full factorial design as an effective tool for optimizing the spray drying process to prepare a multi-functional co-processed excipient.

Author(s):  
SATYAJIT SAHOO ◽  
KIRTI MALVIYA ◽  
AMI MAKWANA ◽  
PRASANTA KUMAR MOHAPATRA ◽  
ASITRANJAN SAHU

Objective: The purpose of this investigation was to formulate, optimize and evaluate sublingual film of Enalapril maleate for rapid management of Hypertension. Methods: Sublingual films were prepared by solvent casting method. Present investigation were formulated by using HPMC E 15 (X1) as polymer and Polyethylene glycol (X2) as plasticizer were chosen as independent variables in 32 full factorial design while Tensile strength (TS), Disintegration time (DT) and % Cumulative drug release at 10 min. (% CDR) were taken as dependent variables. The various physical parameters were evaluated for sublingual films such as thickness, tensile strength, folding endurance, disintegration time, surface pH and % CDR. Results: From the experimental study, it was concluded that the optimized batch F8 showed 98.6 %, the highest release of the drug. Stability study was performed by taking an optimized formulation and it was observed stable. The sublingual films showed acceptable results in all studies such as thickness, tensile strength, folding endurance, disintegration time, surface pH and % CDR at 10 min. R2 values for Tensile Strength (Y1), Disintegration time (Y2) and % cumulative drug release at 10 min. of Enalaprilmaleate(Y3) found to be 0.9852, 0.9829 and 0.9641 respectively. Thus, a good correlation between dependent and independent variables was developed. Conclusion: 32 full factorial design was successfully applied during preparation, optimization and evaluation of sublingual films of Enalapril maleate. The present investigation showed quick disintegration and fast release of the drug for rapid management of Hypertension.


2018 ◽  
Vol 10 (1) ◽  
pp. 59
Author(s):  
Olvishkumar M. Kothiya ◽  
Bhavana A. Patel ◽  
Kunal N. Patel ◽  
Madhubhai M. Patel

Objective: Ivabradine (IB) is anti-Ischemic drug and used for the symptomatic management of stable angina pectoris. IB acts by reducing the heart rate in a mechanism different from beta blockers and calcium channel blockers, two commonly prescribed anti-anginal drugs. IB has a short biological half-life and the dose of 5/7.5 mg twice a day. In this present study, an attempt has been made to prepare sustained release tablet of IB to achieve the desired drug release.Methods: The sustained release polymers, hydroxypropyl methylcellulose K100M (HPMC K100M), guar gum (GG) and xanthan gum (XG) were taken for the preliminary trail from which guar gum and xanthan gum had shown better drug release. Initially, drug-excipients compatibility studies were carried out by using Fourier transformed infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) which showed no interaction between drug and excipients. Tablets were prepared by wet granulation technique and evaluated for pre-compression and post-compression parameters.Results: 32 full factorial design was applied to achieve controlled drug release up to 24 h. The concentration of GG (X1) and XG (X2) were selected as independent variables and the % CDR at 2 h. (Y1) and 18 h. (Y2) were taken as dependent variables. In vitro drug release study revealed that as the amount of polymers increased, % CDR decreased.Conclusion: Contour as well as response surface plots were constructed to show the effect of X1 and X2 on % CDR and predicted at the concentration of independent variables X1 (10 mg) and X2 (10 mg) for a maximized response. The optimized batch (O1) was kept for stability study at 40±2 °C/75±5 %RH for a period of 6mo according to ICH guidelines and found to be stable.


2019 ◽  
Vol 15 (2) ◽  
pp. 139-145
Author(s):  
Izzati Mohamad Abdul Wahab ◽  
Mariam Firdhaus Mad Nordin ◽  
Siti Nur Khairunisa Mohd Amir

Zingiber zerumbet was reported to has chemo preventive effects and was suggested as one of the therapeutic treatments for cancer. In this study, Z. zerumbet was extracted using subcritical water extraction (SWE) by employing two level full factorial design. 2 k full factorial design was employed using 18 runs with 10 repeats in central points. The independent variables factors were temperature (100-150°C), time (10-30 minutes) and material ratio (1:10 and 1:20 g/ml) for the evaluation of highest zerumbone concentration and overall yield of extracted Z. zerumbet. Effects of extraction temperature and time were found to be significant on all responses with p-value <0.05. However, the material ratio only gave significant effect on the zerumbone concentration and less significant on the yield. In addition, the value of curvature was found to be significant, thus indicating the relation between the independent variables and the response was linear. Therefore, it was found that the concentration of zerumbone and yield from Z. zerumbet extracted by SWE were significantly affected by temperature and time of extraction.


2020 ◽  
Vol 5 (3) ◽  
pp. 213-220
Author(s):  
M.M. Pandey ◽  
K.B. Prajapati ◽  
A.J. Vyas ◽  
A.M. Patel ◽  
N.K. Patel ◽  
...  

The present study examines simultaneous multiple response optimization using desirability function for the development of an HPTLC method to detect esomeprazole magnesium trihydrate and levosulpiride in pharmaceutical dosage form. HPTLC separation was performed on aluminium plates pre-coated with silica gel 60 F254 as the stationary phase using ethyl acetate:methanol:toluene:ammonia (7:1.5:1.5:0.1% v/v/v) as the mobile phase. Full factorial design applied for the optimization of degradation condition. Esomeprazole magnesium trihydrate and levosulpiride were subjected to acid, alkali hydrolysis, oxidation and photodegradation. Experimental full factorial design has been used during forced degradation to determine significant factors responsible for degradation and to optimize degradation conditions reaching maximum degradation. 32 and 23 full factorial design has been used for optimization of chromatographic condition in acid and base degradation study, respectively. Quantification was achieved based on a densitometric analysis of esomeprazole magnesium trihydrate and levosulpiride over the concentration range of 800-4000 ng/band and 1500-7500 ng/band, respectively at 254 nm. The method yielded compact and well-resolved bands at Rf of 0.70 ± 0.02 and 0.32 ± 0.02 for esomeprazole magnesium trihydrate and levosulpiride, respectively. The linear regression analysis for the calibration plots produced r2 = 0.9967 and r2 = 0.9981 for esomeprazole magnesium trihydrate and levosulpiride, respectively. Method is validated as per ICH (Q2)R1 guideline.


2013 ◽  
Vol 711 ◽  
pp. 178-182
Author(s):  
Prachya Peasura ◽  
Narasak Duangsrikaew ◽  
Santirat Nansaarng

In this research, the post weld heat treatment (PWHT) of duplex stainless steel (DSS) was study. The PWHT process can be affected by differing parameters. The specimen was duplex stainless steel UNS31803 grade sheet of 10 mm thickness. The PWHT parameters were analyzed by application of full factorial design. The factors used in this study were PWHT temperature of 650, 750, and 850๐C with PWA time of 1, 2, 4 and 8 hours. The welded specimens were tested with micro vickers hardness and ferrite content testing according to ASTM E3-11 code. The result showed that both of PWHT temperature and PWHT time interaction on hardness and ferrite content for 95% confidential (P value < 0.05). The factor in most effect of hardness was the PWHT temperature of 850๐C and PWHT time for 4 hour at the hardness of 277.73 HV. The ferrite was the most ferrite content for 77.39% resulted in corrosion resistance due to suitable of PWHT temperature 750๐C and PWHT time for 8 hour. Finally, form PWHT process with the information was used choosing the appropriate for PWHT parameters to duplex stainless steel welds.


Sign in / Sign up

Export Citation Format

Share Document