thermoelectric module
Recently Published Documents


TOTAL DOCUMENTS

494
(FIVE YEARS 142)

H-INDEX

28
(FIVE YEARS 7)

2022 ◽  
Vol 120 (1) ◽  
pp. 013501
Author(s):  
Raju Chetty ◽  
Priyanka Jood ◽  
Masayuki Murata ◽  
Koichiro Suekuni ◽  
Michihiro Ohta

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 209
Author(s):  
Rui Miao ◽  
Xiaoou Hu ◽  
Yao Yu ◽  
Qifeng Zhang ◽  
Zhibin Lin ◽  
...  

A thermoelectric module is a device that converts electrical energy into thermal energy through a mechanism known as the Peltier effect. A Peltier device has hot and cold sides/substrates, and heat can be pumped from the cold side to the hot side under a given voltage. By applying it in buildings and attaching it to building envelope components, such as walls, as a heating and cooling device, the heating and cooling requirements can be met by reversing the voltage applied on these two sides/substrates. In this paper, we describe a novel, panelized, ground source, radiant system design for space heating and cooling in buildings by utilizing the Peltier effect. The system is equipped with water pipes that are attached to one side of the panel and connected with a ground loop to exchange heat between the cold/hot sides of the thermoelectric module and the underground region. The ground loop is inserted in boreholes, similar to those used for a vertical closed-loop Ground Source Heat Pump (GSHP) system, which could be more than a hundred meters deep. Experiments were conducted to evaluate the feasibility of the developed panel system applied in buildings. The results show that: (1) the average cooling Coefficients Of Performance (COP) of the system are low (0.6 or less) even though the ground is used as a heat sink, and thus additional studies are needed to improve it in the future, such as to arrange the thermoelectric modules in cascade and/or develop a new thermoelectric material that has a large Seebeck coefficient; and (2) the developed system using the underground region as the heat source has the potential of meeting heating loads of a building while maintaining at a higher system coefficient of performance (up to ~3.0) for space heating, compared to conventional heating devices, such as furnaces or boilers, especially in a region with mild winters and relatively warm ground.


2021 ◽  
Author(s):  
Cheng-Lun Hsin ◽  
Jen-Che Hsiao ◽  
You-Ming Chen ◽  
Sheng-Wei Lee

Abstract Thermoelectric materials are considered promising candidates for thermal energy conversion. This study presents the fabrication of Zn– and Ce–alloyed In2O3 with a porous structure. The electrical conductivity was improved by the alloying effect and an ultra–low thermal conductivity was observed owing to the porous structure, which concomitantly provide a distinct enhancement of ZT. However, SiO2 nanoparticle additives react with the matrix to form a third-phase impurity, which weakens the electrical conductivity and increases the thermal conductivity. A thermoelectric module was constructed for the purpose of thermal heat energy conversion. Our experimental results proved that both an enhancement in electrical conductivity and a suppression in thermal conductivity could be achieved through nano–engineering. This approach presents a feasible route to synthesize porous thermoelectric oxides, and provides insight into the effect of additives; moreover, this approach is a cost-effective method for the fabrication of thermoelectric oxides without traditional hot-pressing and spark–plasma–sintering processes.


Author(s):  
O. V. Evdulov ◽  
A. M. Nasrulaev ◽  
R. Sh. Kazumov

Objectives.The  purpose  of  the  article  is  to  consider  the  designs  of thermoelectric  devices  (TEC)  for  extracting  foreign  objects  (IO)  from  the  human  body  by freezing with various options for removing heat from the hot junctions of the thermoelectric module (TEM).Method. Modifications of thermoelectric devices are described for extracting the IO from the human body by freezing it to a special probe. Their technical design differs in the way of heat removal from the TEM hot junctions, for which air heat removal, melting working substances and preliminary cooling of the radiator are used. The basic relationships for calculating the technical means intended for the removal of heat from the hot junctions of the TEM are presented.Result. The graphs of the dependence of the temperature change of the TEM hot junctions in time are obtained for different values of its heat output when using an air heat removal system and the time of complete penetration of various working substances used in the device.Conclusion. The data obtained show that for the operating conditions of the TEC, the temperature of the hot junctions of the TEM with an air heat sink does not go beyond the permissible limits. With a module power of 8 W, 12 W and 16 W, the temperature of the hot junctions of thermoelements stabilizes rather quickly and takes the value of 308 K, 313 K and 318 K. maintaining their stable temperature is most preferred is nickel nitrate, less - elaidic acid and paraffin. Calculations of the design of a device with a pre-cooled radiator system also show the efficiency of heat removal from the hot junctions of the TEM for the duration of the entire procedure for removing the IO from the human body.


2021 ◽  
Vol 59 (11) ◽  
pp. 829-837
Author(s):  
Nayoung Lee ◽  
Sungwook Ye ◽  
Rahman Jamil Ur ◽  
Jang-Yeul Tak ◽  
Jung Young Cho ◽  
...  

Development new high-performance thermoelectric materials for more efficient power generation systems and eco-friendly refrigerating systems has been challenging. Over the past few decades, thermoelectric studies have been focused on increasing the thermoelectric properties of materials. However, for conventional applications, developing of thermoelectric devices or modules with lower cost and simpler fabrication processes is also important. Simulation models that can predict the thermoelectric efficiency of modules using the thermoelectric properties of materials are needed for this purpose. In this study, we developed a simple model for calculating the efficiency of thermoelectric modules using MATLAB/Simulink. In this model, the temperature difference between the hot source and heat sink was fixed to ensure the precise comparisons of thermoelectric efficiency. The electric resistivity and Seebeck coefficient of thermoelectric materials was used in order to predict the efficiency of the thermoelectric modules. Then, the efficiency of the thermoelectric modules was verified using measured values which had been reported in prior experimental works. In this study, the simulated values were higher than the real thermoelectric effiency values. To address this, the simulations should consider the thermal resistance or electric contact resistance between the thermoelectric materials and electrodes.


2021 ◽  
Vol 39 (5) ◽  
pp. 1618-1626
Author(s):  
Sarawut Sirikasemsuk ◽  
Songkran Wiriyasart ◽  
Ruktai Prurapark ◽  
Nittaya Naphon ◽  
Paisarn Naphon

We investigated the results of the cooling performance of the pulsating water/nanofluids flowing in the thermoelectric cooling module for cooling electric vehicle battery systems. The experimental system was designed and constructed to consider the effects of the water block configuration, hot and cold side flow rates, supplied power input, and coolant types on the cooling performance of the thermoelectric module. The measured results from the present study with the Peltier module are verified against those without the thermoelectric module. Before entering the electric vehicle battering system with a Peltier module, the inlet coolant temperatures were 2.5-3.5℃ lower than those without the thermoelectric system. On the hot side, the maximum COP of the thermoelectric cooling module was 1.10 and 1.30 for water and nanofluids as coolant, respectively. The results obtained from the present approach can be used to optimize the battery cooling technique to operate in an appropriate temperature range for getting higher energy storage, durability, lifecycles, and efficiency.


2021 ◽  
Vol 21 (5) ◽  
pp. 107-113
Author(s):  
Juyeong Jung ◽  
Taesoon Kwon ◽  
Won-Hee Park ◽  
Duckhee Lee

The growth of the energy market due to global eco-friendly policy issues is leading to the growth of the lithium-ion battery market related to the energy storage system (ESS). However, if a fire occurs in an ESS using lithium-ion batteries, it is difficult to penetrate fire extinguishing agents due to the structural characteristics of lithium-containing electrical fire and cell-unit batteries. For this reason, ESS needs to study fire prevention and diffusion prevention systems; in this paper, computational fluid dynamics (CFD) are utilized to evaluate the cooling properties of PCM and thermoelectric devices, which are easy to apply in practice. In the PCM model, the correlation between the mass of the PCM and its temperature rise time confirmed that temperature control through PCM is possible when the temperature of the heating battery is out of the normal range. In the thermoelectric module, the numerical results of the model with an output of 40 W under the input power of 200 W confirmed that the heating value and the output of the thermoelectric module can create thermal equilibrium in a short time.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6645
Author(s):  
Wenjie Zhang ◽  
Jiajun Zhang ◽  
Fengcheng Huang ◽  
Yuqiang Zhao ◽  
Yongheng Zhong

Through experiments and numerical simulation, this paper studies the related performance of a photovoltaic thermoelectric radiation cooling window structure, verifies the accuracy of the established solar thermoelectric radiation window calculation model, and analyzes the cooling performance of different parameters of thermoelectric sheet, radiation plate, and photovoltaic panel. On the basis of considering the relationship between the power generation and power consumption of the structure, the numerical calculation results show that the solar thermoelectric radiation window with non-transparent photovoltaic module (NTPV) has a total cooling capacity of 50.2 kWh, power consumption of 71.8 kWh, and power generation of 83.9 kWh from June to August. The solar thermoelectric radiation window with translucent photovoltaic module (STPV) has a total cooling capacity of 50.7 kWh, power consumption of 71.7 kWh, and power generation of 45.4 kWh from June to August. If the operation time of the thermoelectric module is limited, when the daily operation time of TEM is less than 8 h, the power generation of STPV can meet the power consumption demand of the thermoelectric radiation window from June to August.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012028
Author(s):  
Sh Sattar ◽  
A Osipkov ◽  
V V Belyaev

Abstract Developing an optimized reliability model for thermoelectric module at the stress where the probability of module to functions without abruptive failure is a challenging aspect. One of the major reasons is the mismatch of thermal expansion coefficient, which has severe effects on segmented moduli compared to unsegmented moduli. The likelihood of a thermoelectric module to survive at certain level of thermo-mechanical stresses varies by varying number of component (layers) in thermoelectric leg. On another hand, selection of an adequate distribution model to predict reliability and sustainability of the thermoelectric module requires development of new optimized stress-strength-based model. In this paper the predictive reliability model for high temperature segmented module is derived from parametric Lognormal mean residual life and nonparametric Lognormal-kernel survival function to measure probability of module to survive at certain thermo-mechanical stress. A comprehensive comparative discussion has been done to illustrate the maximum likelihood based on Bayesian nonparametric lognormal-Kernel inference method regarding to Monte Carlo simulation, Weibull’s distribution, and Lognormal mean residual life for various shapes for the survival function. It has been demonstrated that nonparametric lognormal-kernel survival function has high ratio of probability to predict the survival of module at higher discrete thermo-mechanical stress data.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6264
Author(s):  
Krzysztof Sornek

Thermoelectric generators are devices that harvest waste heat and convert it into useful power. They are considered as an additional power source in the domestic sector, but they can also be installed in off-grid objects. In addition, they are a promising solution for regions where there is a lack of electricity. Since biomass heating and cooking stoves are widely used, it is very appropriate to integrate thermoelectric generators with wood-fired stoves. This paper shows the experimental analysis of a micro-cogeneration system equipped with a wood-fired stove and two prototypical constructions of thermoelectric generators dedicated to mounting on the flue gas channel. The first version was equipped with one basic thermoelectric module and used to test various cooling methods, while the second construction integrated four basic thermoelectric modules and a water-cooling system. During the tests conducted, the electricity generated in the thermoelectric generators was measured by the electronic load, which allowed the simulation of various operating conditions. The results obtained confirm the possibility of using thermoelectric generators to generate power from waste heat resulting from the wood-fired stove. The maximum power obtained during the discussed combustion process was 15.4 W (if this value occurred during the entire main phase, the energy generated would be at a level of approximately 30 Wh), while the heat transferred to the water was ca. 750 Wh. Furthermore, two specially introduced factors (CPC and CPTC) allowed the comparison of developed generators, and the conclusion was drawn that both developed constructions were characterized by higher CPC values compared to available units in the market. By introducing thermoelectric modules characterized by higher performance, a higher amount of electricity generated may be provided, and sufficient levels of current and voltage may be achieved.


Sign in / Sign up

Export Citation Format

Share Document