Toward the design of an intelligent system for enhancing salt water shrimp production using fuzzy logic

2022 ◽  
pp. 533-541
Author(s):  
Charles Oluwaseun Adetunji ◽  
Osikemekha Anthony Anani ◽  
Olaniyan T. Olugbemi ◽  
Daniel Ingo Hefft ◽  
Nwankwo Wilson ◽  
...  
2013 ◽  
Vol 15 (4) ◽  
pp. 1474-1490 ◽  
Author(s):  
Ata Allah Nadiri ◽  
Elham Fijani ◽  
Frank T.-C. Tsai ◽  
Asghar Asghari Moghaddam

The study introduces a supervised committee machine with artificial intelligence (SCMAI) method to predict fluoride in ground water of Maku, Iran. Ground water is the main source of drinking water for the area. Management of fluoride anomaly needs better prediction of fluoride concentration. However, the complex hydrogeological characteristics cause difficulties to accurately predict fluoride concentration in basaltic formation, non-basaltic formation, and mixing zone. SCMAI predicts fluoride by a nonlinear combination of individual AI models through an artificial intelligent system. Factor analysis is used to identify effective fluoride-correlated hydrochemical parameters as input to AI models. Four AI models, Sugeno fuzzy logic, Mamdani fuzzy logic, artificial neural network (ANN), and neuro-fuzzy are employed to predict fluoride concentration. The results show that all of these models have similar fitting to the fluoride data in the Maku area, and do not predict well for samples in the mixing zone. The SCMAI employs an ANN model to re-predict the fluoride concentration based on the four AI model predictions. The result shows improvement to the CMAI method, a committee machine with the linear combination of AI model predictions. The results also show significant fitting improvement to individual AI models, especially for fluoride prediction in the mixing zone.


Author(s):  
Amal Kilani ◽  
Ahmed Ben Hamida ◽  
Habib Hamam

In this chapter, the authors present a profound literature review of artificial intelligence (AI). After defining it, they briefly cover its history and enumerate its principal fields of application. They name, for example, information system, commerce, image processing, human-computer interaction, data compression, robotics, route planning, etc. Moreover, the test that defines an artificially intelligent system, called the Turing test, is also defined and detailed. Afterwards, the authors describe some AI tools such as fuzzy logic, genetic algorithms, and swarm intelligence. Special attention will be given to neural networks and fuzzy logic. The authors also present the future research directions and ethics.


Author(s):  
Jose Aguilar ◽  
◽  
Mariela Cerrad ◽  
Katiuska Morillo ◽  
◽  
...  

The integration of different intelligent techniques (such as Artificial Neural Networks, Fuzzy Logic, Genetic Algorithms, etc.) into a hybrid architecture allows to overcome their individual limitations. In industrial environments, these intelligent techniques can be combined to reach more effective solutions to complex problems. On the other hand, failure management in processes, equipment or plants, acquires more importance in modern industry every day, in order to minimize unexpected faults and guaranties a greater reliability, safety, disposition and productivity in the industry. In this paper, an intelligent system is designed for failure management based on Reliability Centered Maintenance methodology, Fuzzy Logic and Neural Networks. The system proposes the maintenance tasks according to the historical data of the equipment.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2818
Author(s):  
Pedro J. Correa-Caicedo ◽  
Horacio Rostro-González ◽  
Martin A. Rodriguez-Licea ◽  
Óscar Octavio Gutiérrez-Frías ◽  
Carlos Alonso Herrera-Ramírez ◽  
...  

GPS sensors are widely used to know a vehicle’s location and to track its route. Although GPS sensor technology is advancing, they present systematic failures depending on the environmental conditions to which they are subjected. To tackle this problem, we propose an intelligent system based on fuzzy logic, which takes the information from the sensors and correct the vehicle’s absolute position according to its latitude and longitude. This correction is performed by two fuzzy systems, one to correct the latitude and the other to correct the longitude, which are trained using the MATLAB ANFIS tool. The positioning correction system is trained and tested with two different datasets. One of them collected with a Pmod GPS sensor and the other a public dataset, which was taken from routes in Brazil. To compare our proposal, an unscented Kalman filter (UKF) was implemented. The main finding is that the proposed fuzzy systems achieve a performance of 69.2% higher than the UKF. Furthermore, fuzzy systems are suitable to implement in an embedded system such as the Raspberry Pi 4. Another finding is that the logical operations facilitate the creation of non-linear functions because of the ‘if else’ structure. Finally, the existence justification of each fuzzy system section is easy to understand.


Author(s):  
Noor Salam Al-Fallooji ◽  
◽  
Maysam Abbod

Helicopter instability is one of the most limitations that should be addressed in a nonlinear application. Accordingly, researchers are invited to design a robust and reliable controller to obtain a stable system and enhance its overall performance. The present study focuses on the use of the intelligent system in controlling the pitch and yaw angles. This lead to controlling the elevation and the direction of the helicopter. Further to the application of the Linear Quadratic Regulator (LQR) controller, this research implemented the Proportional Integral Derivative (PID), Fuzzy Logic Control (FLC), and Artificial Neural Network (ANN). The results show that FLC achieved a good controllability for both angles, particularly for the pitch angle in comparison to the nonlinear auto regressive moving average (NARMA-L2). Moreover, NARMA-L2 requires further improvement by using, for example, the swarm optimization method to provide better controllability. The PID controller, on the other hand, had a greater capability in controlling the yaw angle in comparison to the other controllers implemented. Accordingly, it is suggested that the integration of PID and FLC may lead to more optimal outcomes.


Author(s):  
Masoud Mohammadian ◽  
Ric Jentzsch

The World Wide Web has added an abundance of data and information to the complexity of information for disseminators and users alike. With this complexity has come the problem of finding useful and relevant information. There is a need for improved and intelligent search and retrieval engines. Current search engines are primarily passive tools. To improve the results returned by searches, intelligent agents and other technology have the potential, when used with existing search and retrieval engines, to provide a more comprehensive search with an improved performance. This research provides the building blocks for integrating intelligent agents with current search engines. It shows how an intelligent system can be constructed to assist in better information filtering, gathering and retrieval. The research is unique in the way the intelligent agents are directed and in how computational intelligence techniques (such as evolutionary computing and fuzzy logic) and intelligent agents are combined to improve information filtering and retrieval. Fuzzy logic is used to access the performance of the system and provide evolutionary computing with the necessary information to carry out its search.


Sign in / Sign up

Export Citation Format

Share Document