route planning
Recently Published Documents


TOTAL DOCUMENTS

1883
(FIVE YEARS 722)

H-INDEX

40
(FIVE YEARS 10)

2022 ◽  
Vol 13 (1) ◽  
pp. 1-25
Author(s):  
Yuandong Wang ◽  
Hongzhi Yin ◽  
Tong Chen ◽  
Chunyang Liu ◽  
Ben Wang ◽  
...  

In recent years, ride-hailing services have been increasingly prevalent, as they provide huge convenience for passengers. As a fundamental problem, the timely prediction of passenger demands in different regions is vital for effective traffic flow control and route planning. As both spatial and temporal patterns are indispensable passenger demand prediction, relevant research has evolved from pure time series to graph-structured data for modeling historical passenger demand data, where a snapshot graph is constructed for each time slot by connecting region nodes via different relational edges (origin-destination relationship, geographical distance, etc.). Consequently, the spatiotemporal passenger demand records naturally carry dynamic patterns in the constructed graphs, where the edges also encode important information about the directions and volume (i.e., weights) of passenger demands between two connected regions. aspects in the graph-structure data. representation for DDW is the key to solve the prediction problem. However, existing graph-based solutions fail to simultaneously consider those three crucial aspects of dynamic, directed, and weighted graphs, leading to limited expressiveness when learning graph representations for passenger demand prediction. Therefore, we propose a novel spatiotemporal graph attention network, namely Gallat ( G raph prediction with all at tention) as a solution. In Gallat, by comprehensively incorporating those three intrinsic properties of dynamic directed and weighted graphs, we build three attention layers to fully capture the spatiotemporal dependencies among different regions across all historical time slots. Moreover, the model employs a subtask to conduct pretraining so that it can obtain accurate results more quickly. We evaluate the proposed model on real-world datasets, and our experimental results demonstrate that Gallat outperforms the state-of-the-art approaches.


2022 ◽  
Vol 24 ◽  
pp. 101314
Author(s):  
Li-Na Gao ◽  
Fei Tao ◽  
Pei-Long Ma ◽  
Chen-Yi Wang ◽  
Wei Kong ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 482
Author(s):  
Jiachen Yang ◽  
Tianlei Ni ◽  
Lin Liu ◽  
Jiabao Wen ◽  
Jingyi He ◽  
...  

Marine surveying is an important part of marine environment monitoring systems. In order to improve the accuracy of marine surveying and reduce investment in artificial stations, it is necessary to use high-precision GNSS for shipborne navigation measurements. The basic measurement is based on the survey lines that are already planned by surveyors. In response to the needs of survey vessels sailing to the survey line, a method framework for the shortest route planning is proposed. Then an intelligent navigation system for survey vessels is established, which can be applied to online navigation of survey vessels. The essence of the framework is that the vessel can travel along the shortest route to the designated survey line under the limitation of its own minimum turning radius. Comparison and analysis of experiments show that the framework achieves better optimization. The experimental results show that our proposed method can enable the vessel to sail along a shorter path and reach the starting point of the survey line at the specified angle.


Author(s):  
Lan Lan

With the rapid development of the Internet, e-commerce business has gradually emerged. However, its logistics distribution route planning method has problems such as redundancy of logistics data, which cannot achieve centralized planning of distribution paths, resulting in low e-commerce logistics distribution efficiency and long distribution distances, higher cost. Therefore, in order to improve the ability of logistics distribution path planning, this paper designs an e-commerce logistics distribution path planning method based on improved genetic algorithm. Optimize the analysis of e-commerce logistics distribution nodes, establish a modern logistics distribution system, and optimize the total transportation time and transportation cost under the location model of the logistics distribution center. Using hybrid search algorithm and improved genetic algorithm parameters, an improved genetic algorithm distribution path planning model is established to select the optimal path of logistics distribution, and realize e-commerce logistics distribution path with high accuracy, low error and good convergence. planning. According to the experimental results, the method in this paper can effectively shorten the distance of e-commerce logistics distribution path, reduce the number of distribution vehicles, reduce distribution costs, improve distribution efficiency, and effectively achieve centralized planning of logistics distribution. Therefore, the e-commerce logistics distribution route planning method based on improved genetic algorithm has high practical application value.


2022 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Baoju Liu ◽  
Jun Long ◽  
Min Deng ◽  
Xuexi Yang ◽  
Yan Shi

In recent years, the route-planning problem has gained increased interest due to the development of intelligent transportation systems (ITSs) and increasing traffic congestion especially in urban areas. An independent route-planning strategy for each in-vehicle terminal improves its individual travel efficiency. However, individual optimal routes pursue the maximization of individual benefit and may contradict the global benefit, thereby reducing the overall transport efficiency of the road network. To improve traffic efficiency while considering the travel time of individual vehicles, we propose a new dynamic route-planning method by innovatively introducing a bidding mechanism in the connected vehicle scenario for the first time. First, a novel bidding-based dynamic route planning is proposed to formulate vehicle routing schemes for vehicles affected by congestion via the bidding process. Correspondingly, a bidding price incorporating individual and global travel times was designed to balance the travel benefits of both objectives. Then, in the bidding process, a new local search algorithm was designed to select the winning routing scheme set with the minimum bidding price. Finally, the proposed method was tested and validated through case studies of simulated and actual driving scenarios to demonstrate that the bidding mechanism would be conducive to improving the transport efficiency of road networks in large-scale traffic flow scenarios. This study positively contributes to the research and development of traffic management in ITSs.


Sign in / Sign up

Export Citation Format

Share Document