Synthetic gene circuits for higher-order information processing

2022 ◽  
pp. 373-395
Author(s):  
Kathakali Sarkar ◽  
Sangram Bagh
2021 ◽  
pp. 1-18
Author(s):  
Andrew Lezia ◽  
Arianna Miano ◽  
Jeff Hasty

Author(s):  
Barbara Jusiak ◽  
Ramiz Daniel ◽  
Fahim Farzadfard ◽  
Lior Nissim ◽  
Oliver Purcell ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Huijuan Wang ◽  
Maurice H.T. Ling ◽  
Tze Kwang Chua ◽  
Chueh Loo Poh

2021 ◽  
Author(s):  
Luna Rizik ◽  
Loai Danial ◽  
Mouna Habib ◽  
Ron Weiss ◽  
Ramez Daniel

Abstract Biological regulatory networks in cells and neuronal networks employ complex circuit topologies with highly interconnected nodes to perform sophisticated information processing. Despite the complexity of neuronal networks, their information processing and computational capabilities can be recapitulated using simplified models comprising repeated connected nodes, e.g., perceptrons, with decision-making capabilities and flexible weighted links. Here, we argue that analogous to their revolutionary impact on computing, neuro-inspired models can similarly transform synthetic gene circuit design in a manner that is reliable, efficient in resource utilization, and can be readily reconfigurable for new tasks. We introduce neuromorphic design for synthetic gene circuits by first defining the perceptgene, a perceptron that computes in the logarithmic domain, which enables efficient implementation of artificial neural networks in the cellular milieu. Working in Escherichia coli cells, we experimentally demonstrated logarithmic scale analog multiplication using a single perceptgene. We modified perceptgene parameters (weights and biases) to create devices that compute a log-transformed negative rectifier encoding the minimum operation, log-transformed positive rectifier encoding the maximum operation, and log-transformed average of analog inputs. We then created multi-layer perceptgene circuits that compute a majority function, perform analog-to-digital conversion, and implement a ternary switch. Experimental and theoretical analysis showed that our approach enables circuit optimization via artificial intelligence algorithms such as gradient descent and backpropagation. Realizing neural-like computing in the noisy resource-limited environments of individual cells marks an important step towards synthetic biological systems that can be engineered effectively via supervised ANN optimization algorithms.


2019 ◽  
Author(s):  
Javier Santos-Moreno ◽  
Eve Tasiudi ◽  
Joerg Stelling ◽  
Yolanda Schaerli

AbstractGene expression control based on CRISPRi (clustered regularly interspaced short palindromic repeats interference) has emerged as a powerful tool for creating synthetic gene circuits, both in prokaryotes and in eukaryotes; yet, its lack of cooperativity has been pointed out as a potential obstacle for dynamic or multistable circuit construction. Here we use CRISPRi to build prominent synthetic gene circuits in Escherichia coli. We report the first-ever CRISPRi oscillator (“CRISPRlator”), bistable network (toggle switch) and stripe pattern-forming incoherent feed-forward loop (IFFL). Our circuit designs, conceived to feature high predictability and orthogonality, as well as low metabolic burden and context-dependency, allowed us to achieve robust circuit behaviors. Mathematical modeling suggests that unspecific binding in CRISPRi is essential to establish multistability. Our work demonstrates the wide applicability of CRISPRi in synthetic circuits and paves the way for future efforts towards engineering more complex synthetic networks, boosted by the advantages of CRISPR technology.


2021 ◽  
Author(s):  
Kevin S. Farquhar ◽  
Michael Tyler Guinn ◽  
Gábor Balázsi ◽  
Daniel A. Charlebois

Mathematical models and synthetic gene circuits are powerful tools to develop novel treatments for patients with drug-resistant infections and cancers. Mathematical modeling guides the rational design of synthetic gene circuits. These systems are then assembled into unified constructs from existing and/or modified genetic components from a range of organisms. In this chapter, we describe modeling tools for the design and characterization of chemical- and light-inducible synthetic gene circuits in different organisms and highlight how synthetic gene circuits are advancing biomedical research. Specifically, we demonstrate how these quantitative model systems are being used to study drug resistance in microbes and to probe the spatial–temporal dimensions of cancer in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document