gene expression control
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 98)

H-INDEX

30
(FIVE YEARS 9)

2021 ◽  
Vol 7 (4) ◽  
pp. 81
Author(s):  
Ilias Skeparnias ◽  
Jinwei Zhang

Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.


Author(s):  
David B Neale ◽  
Aleksey V Zimin ◽  
Sumaira Zaman ◽  
Alison D Scott ◽  
Bikash Shrestha ◽  
...  

Abstract Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.


2021 ◽  
Author(s):  
David Aciole Barbosa ◽  
Alexandre Santos Simeone ◽  
Ana Carolina Humberto ◽  
Yara Natercia Lima Faustino de Maria ◽  
Regina Costa de Oliveira ◽  
...  

Abstract Previous genomic/transcriptomic analyses of Talaromyces marneffei (TM) unravelled relevant pathogenicity-related elements, as well as chromosomal regions potentially involved with the production of non-coding RNAs (ncRNAs), which have been parsimoniously reported in fungi. This manuscript describes a comprehensive pan-transcriptome assembly for TM that identifies a series of previously undetected genetic elements in this emerging pathogenic fungus. Our results confirm that ~58.28% of the 9,480 genes currently annotated in the TM genome are, in fact, transcribed in vivo and that ~23.6% of them may display alternative isomorphs. Moreover, we identified 585 transcripts that do not match any gene currently mapped in the genome, represented by 90 coding transcripts and 140 ncRNAs, including 48 long non-coding RNAs (lncRNAs). Overall, we expect that the novel elements described herein may contribute to improve the currently available Talaromyces databases and foster studies aiming at characterizing lncRNA-mediated gene expression control in fungi.


2021 ◽  
Author(s):  
Sila Kose ◽  
Recep Ahan ◽  
Ilkay Koksaldi ◽  
Muazzez Olgac ◽  
Cigdem Kasapkara ◽  
...  

The number of synthetic biology based solutions employed in the medical industry is growing every year. The whole cell biosensors being one of them, have been proven valuable tools for developing low-cost, portable, personalized medicine alternatives to conventional techniques. Based on this concept, we targeted one of the major health problems in the world, Chronic Kidney Disease (CKD). To do so, we developed two novel biosensors for the detection of two important renal biomarkers; urea and uric acid. Using advanced gene expression control strategies we improved the operational range and the response profiles of each biosensor to meet clinical specifications. We further engineered these systems to enable multiplexed detection as well as an AND-logic gate operating system. Finally, we tested the applicability of these systems and optimized their working dynamics inside complex medium human blood serum. This study could help the efforts to transition from labor-intensive and expensive laboratory techniques to widely available, portable, low cost diagnostic options.


2021 ◽  
Vol 22 (22) ◽  
pp. 12340
Author(s):  
Katja Rust ◽  
Andreas Wodarz

Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.


2021 ◽  
Author(s):  
Matthias S. Leisegang ◽  
Jasleen Kaur Bains ◽  
Sandra Seredinski ◽  
James A. Oo ◽  
Nina M. Krause ◽  
...  

DNA:DNA:RNA triplexes that are formed through Hoogsteen base-pairing have been observed in vitro, but the extent to which these interactions occur in cells and how they impact cellular functions remains elusive. Using a combination of bioinformatic techniques, RNA/DNA pulldown and biophysical studies, we set out to identify functionally important DNA:DNA:RNA triplex-forming long non-coding RNAs (lncRNA) in human endothelial cells. The lncRNA HIF1α-AS1 was retrieved as a top hit. Endogenous HIF1α-AS1 reduced the expression of numerous genes, including EPH Receptor A2 and Adrenomedullin through DNA:DNA:RNA triplex formation by acting as an adapter for the repressive human silencing hub complex (HUSH). Moreover, the oxygen-sensitive HIF1α-AS1 was down-regulated in pulmonary hypertension and loss-of-function approaches not only resulted in gene de-repression but also enhanced angiogenic capacity. As exemplified here with HIF1α-AS1, DNA:DNA:RNA triplex formation is a functionally important mechanism of trans-acting gene expression control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kenia Salazar-Díaz ◽  
Mayra Aquino-Luna ◽  
Eloísa Hernández-Lucero ◽  
Brenda Nieto-Rivera ◽  
Marlon A. Pulido-Torres ◽  
...  

Plant defense and adaptation to adverse environmental conditions rely on gene expression control, such as mRNA transcription, processing, stability, and translation. Sudden temperature changes are common in the era of global warming; thus, understanding plant acclimation responses at the molecular level becomes imperative. mRNA translation initiation regulation has a pivotal role in achieving the synthesis of the appropriate battery of proteins needed to cope with temperature stress. In this study, we analyzed the role of translation initiation factors belonging to the eIF4E family in Arabidopsis acclimation to cold temperatures and freezing tolerance. Using knockout (KO) and overexpressing mutants of AteIF4E1 or AteIF(iso)4E, we found that AteIF4E1 but not AteIF(iso)4E overexpressing lines displayed enhanced tolerance to freezing without previous acclimation at 4°C. However, KO mutant lines, eif(iso)4e-1 and eif4e1-KO, were more sensitive to the stress. Cold acclimation in wild-type plants was accompanied by increased levels of eIF4E1 and eIF(iso)4E transcript levels, polysomes (P) enrichment, and shifts of these factors from translationally non-active to active fractions. Transcripts, previously found as candidates for eIF(iso)4E or eIF4E1 selective translation, changed their distribution in both P and total RNA in the presence of cold. Some of these transcripts changed their polysomal distribution in the mutant and one eIF4E1 overexpressing line. According to this, we propose a role of eIF4E1 and eIF(iso)4E in cold acclimation and freezing tolerance by regulating the expression of stress-related genes.


Author(s):  
Thais Teixeira Oliveira ◽  
Fabrícia Lima Fontes-Dantas ◽  
Rayssa Karla de Medeiros Oliveira ◽  
Daniele Maria Lopes Pinheiro ◽  
Leonam Gomes Coutinho ◽  
...  

The presence of oxidized DNA lesions, such as 7,8-dihydro-8-oxoguanine (8-oxoG) and apurinic/apyrimidinic sites (AP sites), has been described as epigenetic signals that are involved in gene expression control. In mammals, Apurinic-apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) is the main AP endonuclease of the base excision repair (BER) pathway and is involved in active demethylation processes. In addition, APE1/Ref-1, through its redox function, regulates several transcriptional factors. However, the transcriptional control targets of each APE1 function are not completely known. In this study, a transcriptomic approach was used to investigate the effects of chemical inhibition of APE1/Ref-1 redox or DNA repair functions by E3330 or methoxyamine (MX) in an inflammatory cellular model. Under lipopolysaccharide (LPS) stimulation, both E3330 and MX reduced the expression of some cytokines and chemokines. Interestingly, E3330 treatment reduced cell viability after 48 h of the treatment. Genes related to inflammatory response and mitochondrial processes were downregulated in both treatments. In the E3330 treatment, RNA processing and ribosome biogenesis genes were downregulated, while they were upregulated in the MX treatment. Furthermore, in the E3330 treatment, the cellular stress response was the main upregulated process, while the cellular macromolecule metabolic process was observed in MX-upregulated genes. Nuclear respiratory factor 1 (NRF1) was predicted to be a master regulator of the downregulated genes in both treatments, while the ETS transcription factor ELK1 (ELK1) was predicted to be a master regulator only for E3330 treatment. Decreased expression of ELK1 and its target genes and a reduced 28S/18S ratio were observed, suggesting impaired rRNA processing. In addition, both redox and repair functions can affect the expression of NRF1 and GABPA target genes. The master regulators predicted for upregulated genes were YY1 and FLI1 for the E3330 and MX treatments, respectively. In summary, the chemical inhibition of APE1/Ref-1 affects gene expression regulated mainly by transcriptional factors of the ETS family, showing partial overlap of APE1 redox and DNA repair functions, suggesting that these activities are not entirely independent. This work provides a new perspective on the interaction between APE1 redox and DNA repair activity in inflammatory response modulation and transcription.


Microbiology ◽  
2021 ◽  
Vol 167 (9) ◽  
Author(s):  
Marie Zachary ◽  
Susanne Bauer ◽  
Maximilian Klepsch ◽  
Katharina Wagler ◽  
Bruno Hüttel ◽  
...  

Non-coding regulatory RNAs mediate post-transcriptional gene expression control by a variety of mechanisms relying mostly on base-pairing interactions with a target mRNA. Though a plethora of putative non-coding regulatory RNAs have been identified by global transcriptome analysis, knowledge about riboregulation in the pathogenic Neisseriae is still limited. Here we report the initial characterization of a pair of sRNAs of N. gonorrhoeae , TfpR1 and TfpR2, which exhibit a similar secondary structure and identical single-stranded seed regions, and therefore might be considered as sibling sRNAs. By combination of in silico target prediction and sRNA pulse expression followed by differential RNA sequencing we identified target genes of TfpR1 which are involved in type IV pilus biogenesis and DNA damage repair. We provide evidence that members of the TfpR1 regulon can also be targeted by the sibling TfpR2.


2021 ◽  
Author(s):  
Nicole A Grieshaber ◽  
Travis J Chiarelli ◽  
Cody R Appa ◽  
Grace Neiswanger ◽  
Kristina Peretti ◽  
...  

The human pathogen Chlamydia trachomatis proceeds through a multi phenotypic developmental cycle with each cell form specialized for different roles in pathogenesis. Understanding the mechanisms regulating this complex cycle has historically been hampered by limited genetic tools. In an effort to address this issue, we developed a translational control system to regulate gene expression in Chlamydia using a synthetic riboswitch. Here we demonstrate that translational control via a riboswitch can be used in combination with a wide range of promoters in C. trachomatis. The synthetic riboswitch E, inducible with theophylline, was used to replace the ribosome binding site of the synthetic promoter T5-lac, the native chlamydial promoter of the pgp4plasmid gene and an anhydrotetracycline responsive promoter. In all cases the riboswitch inhibited translation, and high levels of protein expression was induced with theophylline. Combining the Tet transcriptional inducible promoter with the translational control of the riboswitch resulted in strong repression and allowed for the cloning and expression of the potent chlamydial regulatory protein, HctB. The ability to control the timing and strength of gene expression independently from promoter specificity is a new and important tool for studying chlamydial regulatory and virulence genes.


Sign in / Sign up

Export Citation Format

Share Document