gene circuits
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 91)

H-INDEX

33
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Yuwen Zhao ◽  
Shue Wang

Cell-free expression (CFE) systems have been used extensively in system and synthetic biology as a promising platform for manufacturing proteins and chemicals. Currently, the most widely used CFE system is in vitro protein transcription and translation platform. As the rapidly increased applications and uses, it is crucial to have a standard biophysical model for quantitative studies of gene circuits, which will provide a fundamental understanding of basic working mechanisms of CFE systems. Current modeling approaches mainly focus on the characterization of E. coli-based CFE systems, a computational model that can be utilized to both bacterial- and mammalian-based CFE has not been investigated. Here, we developed a simple ODE (ordinary differential equation)-based biophysical model to simulate transcription and translation dynamics for both bacterial- and mammalian-based CFE systems. The key parameters were estimated and adjusted based on experimental results. We next tested four gene circuits to characterize kinetic dynamics of transcription and translation in E. coli- and HeLa-based CFE systems. The real-time transcription and translation were monitored using Broccoli aptamer, double stranded locked nucleic acid (dsLNA) probe and fluorescent protein. We demonstrated the difference of kinetic dynamics for transcription and translation in both systems, which will provide valuable information for quantitative genomic and proteomic studies. This simple biophysical model and the experimental data for both E. coli- and HeLa-based CFE will be useful for researchers that are interested in genetic engineering and CFE bio-manufacturing.


2021 ◽  
Author(s):  
Laura Prochazka ◽  
Peter W Zandstra ◽  
Yale S Michaels ◽  
Charles Lau ◽  
Mona Siu ◽  
...  

During development, state transitions are coordinated through changes in the identity of molecular regulators in a cell state- and dose specific manner. The ability to rationally engineer such functions in human pluripotent stem cells (hPSC) will enable numerous applications in regenerative medicine. Herein we report the generation of synthetic gene circuits that can detect a discrete cell state, and upon state detection, produce fine-tuned effector proteins in a programmable manner. Effectively, these gene circuits convert a discrete (digital-like) cell state into an analog signal by merging AND-like logic integration of endogenous miRNAs (classifiers) with a miRNA-mediated output fine-tuning technology (miSFITs). Using an automated miRNA identification and model-guided circuit optimization approach, we were able to produce robust cell state specific and graded output production in undifferentiated hPSC. We further finely controlled the levels of endogenous BMP4 secretion, which allowed us to document the effect of endogenous factor secretion in comparison to exogenous factor addition on early tissue development using the hPSC-derived gastruloid system. Our work provides the first demonstration of a discrete-to-analog signal conversion circuit operating in living hPSC, and a platform for customized cell state-specific control of desired physiological factors, laying the foundation for programming cell compositions in hPSC-derived tissues and beyond.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1192
Author(s):  
Hideyuki Nakanishi

Synthetic mRNAs, which are produced by in vitro transcription, have been recently attracting attention because they can express any transgenes without the risk of insertional mutagenesis. Although current synthetic mRNA medicine is not designed for spatiotemporal or cell-selective regulation, many preclinical studies have developed the systems for the translational regulation of synthetic mRNAs. Such translational regulation systems will cope with high efficacy and low adverse effects by producing the appropriate amount of therapeutic proteins, depending on the context. Protein-based regulation is one of the most promising approaches for the translational regulation of synthetic mRNAs. As synthetic mRNAs can encode not only output proteins but also regulator proteins, all components of protein-based regulation systems can be delivered as synthetic mRNAs. In addition, in the protein-based regulation systems, the output protein can be utilized as the input for the subsequent regulation to construct multi-layered gene circuits, which enable complex and sophisticated regulation. In this review, I introduce what types of proteins have been used for translational regulation, how to combine them, and how to design effective gene circuits.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2799-2799
Author(s):  
Brian S. Garrison ◽  
Han Deng ◽  
Gozde Yucel ◽  
Nicholas W. Frankel ◽  
Marcela Guzman-Ayala ◽  
...  

Abstract Background: While chimeric antigen receptor (CAR) cell therapies have provided extraordinary clinical responses in some hematological malignancies, developing effective CAR cell therapies for acute myeloid leukemia (AML) has been challenging due to: (a) the lack of a single target antigen robustly expressed across both AML leukemic stem cell (LSC) and immature leukemic blast cell subpopulations, and (b) the lack of truly AML-specific target antigens, since current targets are also expressed on healthy tissues and may result in off-tumor toxicity. Using logic gated gene circuits, we are engineering our SENTI-202 CAR-NK cell therapy to overcome these long-standing challenges to treating AML patients. Methods: To maximize clearance of AML tumor subpopulations and minimize off-tissue toxicities, we used a proprietary bioinformatics paired antigen discovery platform to identify the optimal combinations of AML tumor-associated and healthy tissue antigens to target using an OR and NOT logic gated CAR gene circuit approach. The SENTI-202 therapeutic candidate is a FLT3 OR CD33 NOT Endomucin (EMCN) gene circuit-enabled allogeneic CAR-NK cell, designed to broadly target FLT3 and/or CD33-expressing AML tumor cells (including both LSCs and blasts) but not healthy hematopoietic stem cells (HSCs). Results: First, for the OR GATE portion of the logic circuit we demonstrated that engineered primary human NK cells expressing activating CARs (aCARs) that recognize both FLT3 and CD33 outperformed more traditional single target CAR approaches with FLT3 (p<0.05) or CD33 (p<0.01), and exhibited >80% cytotoxicity and significant cytokine secretion (GrB, IFN-g, and TNF-a) against multiple leukemia cell lines in vitro, including MOLM13, THP1, and SEM. We successfully engineered FLT3 OR CD33 CAR-NK cells using both bicistronic and bivalent CAR configurations, where bicistronic CARs possess separate FLT3 and CD33 CARs linked via a 2A peptide, and bivalent CARs use a loop structure to connect FLT3 and CD33 scFvs within the same CAR. While both approaches demonstrated robust efficacy against AML cells, the bivalent approach enabled greater CAR expression and cytotoxicity (p<0.05). Importantly, our FLT3 OR CD33 CAR-NK cells demonstrated significant cytotoxicity against primary AML patient samples (p<0.01-0.001) and significantly reduced tumor burden and improved mouse survival in MOLM13 (p<0.05) and MV4-11 (p<0.01) xenograft AML models. We believe that our strategy of concurrently targeting FLT3 and CD33 will result in a more robust synergistic anti-tumor effect, leading to a more durable remission with decreased risk of relapse due to single antigen escape. Second, for the NOT GATE portion of the logic circuit to protect healthy HSCs, we developed NK and T cell inhibitory CARs (iCARs) consisting of an scFv against a healthy cell antigen, hinge and transmembrane domains, and functional intracellular domains derived from inhibitory co-receptors containing immunoreceptor tyrosine-based inhibitory motifs. In the case of SENTI-202, the iCAR scFv recognizes EMCN, a surface antigen expressed on up to 76% of healthy HSCs but not on AML cells. Using two different iCAR configurations, we demonstrated that FLT3 (CD28z) aCAR-NK cells engineered with an EMCN-specific iCAR protected up to 67% (iCAR#1, p<0.01) or 50% (iCAR#2, p<0.01) of FLT3+ EMCN+ cells from FLT3 aCAR-mediated cytotoxicity. Next, to replicate a clinical context more closely, we mixed FLT3+ EMCN- (AML-like) and FLT3+ EMCN+ (HSC-like) target cells and demonstrated that FLT3 NOT EMCN CAR-NK cells exhibit preferential killing of FLT3+ EMCN- target cells (p<0.0001), demonstrating that our NOT GATED gene circuit controls NK-mediated responses on a cell-by-cell basis. Conclusion: SENTI-202 is a novel NK cell product candidate to be engineered with both OR and NOT logic gated CAR gene circuits, wherein the OR gate is designed to increase AML LSC/blast tumor clearance (to prevent relapse), and the NOT gate is designed to protect healthy HSCs from off-tumor toxicity, enabling regeneration of a healthy hematopoietic system and mitigating the need for a bone marrow transplant. Beyond AML, OR and NOT logic gated CAR-NK cell therapy has applicability to other cancer-associated antigen targets that are potentially limited by antigen escape and/or off-tumor toxicity, increasing the potential for enhanced efficacy and reduced risk of undesirable side effects. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A125-A125
Author(s):  
Alba Gonzalez Junca ◽  
Nicholas Frankel ◽  
Marcus Gainer ◽  
Alyssa Mullenix ◽  
Miguel Palermo ◽  
...  

BackgroundCAR-based therapies have transformed the treatment of several cancers, but this progress has not translated into solid tumors. One challenge of CAR-mediated therapies for solid tumors is the lack of specific tumor-associated antigens (TAA’s) that are only expressed on cancer cells and not on healthy cells, thereby posing a risk for on-target off-tumor toxicities. This presents a unique opportunity to use Logic Gates to expand the universe of cancer targets that may be treated with CAR-based cell therapies. CEA, a widely expressed tumor antigen, found in >90% of colorectal cancer (CRC), is also expressed in healthy gastrointestinal and lung epithelial cells. Clinical experience targeting CEA resulted in severe dose-limiting toxicities,1,2 highlighting the need for healthy tissue protection. Logic-gated gene circuits can prevent off-tumor toxicities by pairing a CEA activating-CAR (aCAR) with an inhibitory-CAR (iCAR) that recognizes a safety antigen (SA) uniquely expressed in healthy epithelial cells.MethodsWe developed a bioinformatics-driven antigen paired discovery platform using single-cell transcriptomics to discover and prioritize TAA’s and pair them with SA’s that are selectively expressed on the membrane of healthy cells. TAA’s and SA’s were validated in primary cancer and healthy tissue samples using IHC. We constructed aCAR/iCAR gene circuits and tested their function in NK cells.ResultsOur bioinformatics platform identified VSIG2 to be co-expressed with CEA in healthy gastrointestinal and lung epithelial cells. IHC confirmed the expression of VSIG2 on the membrane of healthy colon (N=72 samples) and lung (N=24 samples) epithelial cells.Using our Design-Build-Test-Learn platform, we screened >250 CAR constructs targeting CEA. CAR-NK cells were generated and tested for anti-tumor activity against CRC CEA+ cells and lead candidates were selected based on NK cell performance. A single dose of CEA-CAR-NK cells had anti-tumor activity in a human CRC xenograft model, reducing tumor burden in >33% of the treated mice. We identified iCARs with different intracellular domains derived from native domains containing immunoreceptor tyrosine-based inhibitory motifs. These iCARs suppressed >50% of aCAR-mediated killing (p<0.05) and significantly reduced TNFa secretion (p<0.0005) in a SA-specific manner.ConclusionsWe are developing Logic-Gated CAR-NK cell therapies aimed at reducing on-target off-tumor toxicities, to spare healthy cells in a SA-dependent manner. SENTI-401 will focus on targeting CEA+ CRC tumors with a NOT gate that recognizes the SA VSIG2 in the colon and lungs.ReferencesParkhurst M, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; Mar;19(3):620–6.Thistlethwaite FC, et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother 2017 Nov;66(11):1425–1436.


2021 ◽  
Author(s):  
Alicia Broto ◽  
Erika Gaspari ◽  
Samuel Miravet-Verde ◽  
Vitor Martins dos Santos ◽  
Mark Isalan

Abstract Mycoplasmas have exceptionally streamlined genomes and are strongly adapted to their many hosts, which provide them with essential nutrients. Owing to their relative genomic simplicity, Mycoplasmas have been used for the development of chassis to deploy tailored vaccines. However, the dearth of robust and precise toolkits for genomic manipulation and tight regulation has hindered any substantial advance. Herein we describe the construction of a robust genetic toolkit for M. pneumoniae, and its successful deployment to engineer synthetic gene switches that control and limit Mycoplasma growth, for biosafety containment applications. We found these synthetic gene circuits to be stable and robust in the long-term, in the context of a minimal cell. With this work, we lay a foundation to develop viable and robust biosafety systems to exploit a synthetic Mycoplasma chassis for live attenuated vaccines or even for live vectors for biotherapeutics.


2021 ◽  
Author(s):  
Shuhui Xu ◽  
Kai Li ◽  
Liang Ma ◽  
Jianhan Zhang ◽  
Shinae Yoon ◽  
...  

ABSTRACTBiological processes are highly dynamic and are regulated by genes that connect with one and another, forming regulatory circuits and networks. Understanding how gene regulatory circuits operate dynamically requires monitoring the expression of multiple genes in the same cell. However, it is limited by the relatively few distinguishable fluorescent proteins. Here, we developed a multiplexed real-time transcriptional imaging method based on two RNA stem-loop binding proteins, and employed it to analyze the temporal dynamics of synthetic gene circuits. By incorporating different ratios of MS2 and PP7 stem-loops, we were able to monitor the real-time nascent transcriptional activities of up to five genes in the same cell using only two fluorescent proteins. Applying this multiplexing capability to synthetic linear or branched gene regulatory cascades revealed that propagation of transcriptional dynamics is enhanced by non-stationary dynamics and is dictated by the slowest regulatory branch in the presence of combinatorial regulation. Mathematical modeling provided further insight into temporal multi-gene interactions and helped to understand potential challenges in regulatory inference using snapshot single-cell data. Ratiometric multiplexing should scale exponentially with additional labelling channels, providing a way to track the dynamics of larger circuits.


Author(s):  
Rafał Krzysztoń ◽  
Yiming Wan ◽  
Julia Petreczky ◽  
Gábor Balázsi

Therapeutic genome modification requires precise control over the introduced therapeutic functions. Current approaches of gene and cell therapy fail to deliver such command and rely on semi-quantitative methods with limited influence on timing, contextuality and levels of transgene expression, and hence on therapeutic function. Synthetic biology offers new opportunities for quantitative functionality in designing therapeutic systems and their components. Here, we discuss synthetic biology tools in their therapeutic context, with examples of proof-of-principle and clinical applications of engineered synthetic biomolecules and higher-order functional systems, i.e. gene circuits. We also present the prospects of future development towards advanced gene-circuit therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shih-Chiang Lo ◽  
Chao-Xuan You ◽  
Bo-Ren Chen ◽  
Ching-Chu Hsieh ◽  
Cheng-En Li ◽  
...  

AbstractThere is a special node, which the large noise of the upstream element may not always lead to a broad distribution of downstream elements. This node is DNA, with upstream element TF and downstream elements mRNA and proteins. By applying the stochastic simulation algorithm (SSA) on gene circuits inspired by the fim operon in Escherichia coli, we found that cells exchanged the distribution of the upstream transcription factor (TF) for the transitional frequency of DNA. Then cells do an inverse transform, which exchanges the transitional frequency of DNA for the distribution of downstream products. Due to this special feature, DNA in the system of frequency modulation is able to reset the noise. By probability generating function, we know the ranges of parameter values that grant such an interesting phenomenon.


Sign in / Sign up

Export Citation Format

Share Document