Animal Models of Bronchopulmonary Dysplasia

Author(s):  
Sean Leary ◽  
Vineet Bhandari
2014 ◽  
Vol 307 (12) ◽  
pp. L936-L947 ◽  
Author(s):  
Jessica Berger ◽  
Vineet Bhandari

The etiology of bronchopulmonary dysplasia (BPD) is multifactorial, with genetics, ante- and postnatal sepsis, invasive mechanical ventilation, and exposure to hyperoxia being well described as contributing factors. Much of what is known about the pathogenesis of BPD is derived from animal models being exposed to the environmental factors noted above. This review will briefly cover the various mouse models of BPD, focusing mainly on the hyperoxia-induced lung injury models. We will also include hypoxia, hypoxia/hyperoxia, inflammation-induced, and transgenic models in room air. Attention to the stage of lung development at the timing of the initiation of the environmental insult and the duration of lung injury is critical to attempt to mimic the human disease pulmonary phenotype, both in the short term and in outcomes extending into childhood, adolescence, and adulthood. The various indexes of alveolar and vascular development as well as pulmonary function including pulmonary hypertension will be highlighted. The advantages (and limitations) of using such approaches will be discussed in the context of understanding the pathogenesis of and targeting therapeutic interventions to ameliorate human BPD.


2006 ◽  
Vol 59 (3) ◽  
pp. 389-395 ◽  
Author(s):  
Katia Nadeau ◽  
Robert P Jankov ◽  
A Keith Tanswell ◽  
Neil B Sweezey ◽  
Feige Kaplan

2016 ◽  
Vol 311 (5) ◽  
pp. L924-L927 ◽  
Author(s):  
Namasivayam Ambalavanan ◽  
Rory E. Morty

There have been many efforts to develop good animal models of bronchopulmonary dysplasia (BPD) to better understand the pathophysiology and mechanisms underlying development of BPD as well as to test potential strategies for its prevention and treatment. This Perspectives summarizes the features of common animal models of BPD and the strengths and limitations of such models. Potential optimal approaches to development of animal models are indicated, with the underlying concepts that require emphasis.


2014 ◽  
Vol 307 (12) ◽  
pp. L959-L969 ◽  
Author(s):  
Carl T. D'Angio ◽  
Rita M. Ryan

Bronchopulmonary dysplasia (BPD) is an important lung developmental pathophysiology that affects many premature infants each year. Newborn animal models employing both premature and term animals have been used over the years to study various components of BPD. This review describes some of the neonatal rabbit studies that have contributed to the understanding of BPD, including those using term newborn hyperoxia exposure models, premature hyperoxia models, and a term newborn hyperoxia model with recovery in moderate hyperoxia, all designed to emulate aspects of BPD in human infants. Some investigators perturbed these models to include exposure to neonatal infection/inflammation or postnatal malnutrition. The similarities to lung injury in human premature infants include an acute inflammatory response with the production of cytokines, chemokines, and growth factors that have been implicated in human disease, abnormal pulmonary function, disordered lung architecture, and alveolar simplification, development of fibrosis, and abnormal vascular growth factor expression. Neonatal rabbit models have the drawback of limited access to reagents as well as the lack of readily available transgenic models but, unlike smaller rodent models, are able to be manipulated easily and are significantly less expensive than larger animal models.


2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Kiersten Giusto ◽  
Heather Wanczyk ◽  
Todd Jensen ◽  
Christine Finck

ABSTRACT Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.


2014 ◽  
Vol 307 (12) ◽  
pp. L970-L977 ◽  
Author(s):  
Bradley A. Yoder ◽  
Jacqueline J. Coalson

Much of the progress in improved neonatal care, particularly management of underdeveloped preterm lungs, has been aided by investigations of multiple animal models, including the neonatal baboon ( Papio species). In this article we highlight how the preterm baboon model at both 140 and 125 days gestation (term equivalent 185 days) has advanced our understanding and management of the immature human infant with neonatal lung disease. Not only is the 125-day baboon model extremely relevant to the condition of bronchopulmonary dysplasia but there are also critical neurodevelopmental and other end-organ pathological features associated with this model not fully discussed in this limited forum. We also describe efforts to incorporate perinatal infection into these preterm models, both fetal and neonatal, and particularly associated with Ureaplasma/ Mycoplasma organisms. Efforts to rekindle the preterm primate model for future evaluations of therapies such as stem cell replacement, early lung recruitment interventions coupled with noninvasive surfactant and high-frequency nasal ventilation, and surfactant therapy coupled with antioxidant or anti-inflammatory medications, to name a few, should be undertaken.


Sign in / Sign up

Export Citation Format

Share Document