scholarly journals Lgl1 Is Suppressed in Oxygen Toxicity Animal Models of Bronchopulmonary Dysplasia and Normalizes During Recovery in Air

2006 ◽  
Vol 59 (3) ◽  
pp. 389-395 ◽  
Author(s):  
Katia Nadeau ◽  
Robert P Jankov ◽  
A Keith Tanswell ◽  
Neil B Sweezey ◽  
Feige Kaplan
2014 ◽  
Vol 307 (12) ◽  
pp. L936-L947 ◽  
Author(s):  
Jessica Berger ◽  
Vineet Bhandari

The etiology of bronchopulmonary dysplasia (BPD) is multifactorial, with genetics, ante- and postnatal sepsis, invasive mechanical ventilation, and exposure to hyperoxia being well described as contributing factors. Much of what is known about the pathogenesis of BPD is derived from animal models being exposed to the environmental factors noted above. This review will briefly cover the various mouse models of BPD, focusing mainly on the hyperoxia-induced lung injury models. We will also include hypoxia, hypoxia/hyperoxia, inflammation-induced, and transgenic models in room air. Attention to the stage of lung development at the timing of the initiation of the environmental insult and the duration of lung injury is critical to attempt to mimic the human disease pulmonary phenotype, both in the short term and in outcomes extending into childhood, adolescence, and adulthood. The various indexes of alveolar and vascular development as well as pulmonary function including pulmonary hypertension will be highlighted. The advantages (and limitations) of using such approaches will be discussed in the context of understanding the pathogenesis of and targeting therapeutic interventions to ameliorate human BPD.


Author(s):  
Julian Allen ◽  
Howard Panitch

Bronchopulmonary dysplasia (BPD) was first described by Northway et al in 1967. This article describes the evolution of our understanding of the pathophysiology of BPD and the approaches to treatments of this illness developed over the past fifty years. These interventions had their roots in the understanding of the principles of the surface tension present at air- liquid interfaces, which were developed over 150 years before BPD’s initial description. Improving outcomes in neonatal care have led to greater survival of preterm and very preterm infants, and to an evolution of the pathogenesis and pathology of BPD, from an illness caused primarily by barotrauma and oxygen toxicity to one of interruption of lung development. While the incidence of BPD has remained about the same in recent decades, this is because survival of infants born at lower gestational ages is increasing. Understanding of molecular, genetic and physiologic mechanisms has led to newer treatments that have mitigated some of the harmful effects of prolonged mechanical ventilation. Recognition of BPD as a chronic multi-system disease has resulted in further improvements in care after discharge from neonatal intensive care. Since many of the origins of chronic obstructive lung disease in adults are based in childhood respiratory illnesses, improving outcomes of BPD in infancy and childhood will undoubtedly lead to improved respiratory outcomes in the adults that these children will become.


2016 ◽  
Vol 311 (5) ◽  
pp. L924-L927 ◽  
Author(s):  
Namasivayam Ambalavanan ◽  
Rory E. Morty

There have been many efforts to develop good animal models of bronchopulmonary dysplasia (BPD) to better understand the pathophysiology and mechanisms underlying development of BPD as well as to test potential strategies for its prevention and treatment. This Perspectives summarizes the features of common animal models of BPD and the strengths and limitations of such models. Potential optimal approaches to development of animal models are indicated, with the underlying concepts that require emphasis.


2013 ◽  
Vol 305 (12) ◽  
pp. L893-L905 ◽  
Author(s):  
Alicia Madurga ◽  
Ivana Mižíková ◽  
Jordi Ruiz-Camp ◽  
Rory E. Morty

In contrast to early lung development, a process exemplified by the branching of the developing airways, the later development of the immature lung remains very poorly understood. A key event in late lung development is secondary septation, in which secondary septa arise from primary septa, creating a greater number of alveoli of a smaller size, which dramatically expands the surface area over which gas exchange can take place. Secondary septation, together with architectural changes to the vascular structure of the lung that minimize the distance between the inspired air and the blood, are the objectives of late lung development. The process of late lung development is disturbed in bronchopulmonary dysplasia (BPD), a disease of prematurely born infants in which the structural development of the alveoli is blunted as a consequence of inflammation, volutrauma, and oxygen toxicity. This review aims to highlight notable recent developments in our understanding of late lung development and the pathogenesis of BPD.


Author(s):  
Zhao Cui ◽  
Neil Turner ◽  
Ming-hui Zhao

Individuals appear to be predisposed to antiglomerular basement membrane (anti-GBM) disease by carrying a predisposing human leucocyte antigen type, DRB1*1501 being identified as the highest risk factor, and there are likely to be other predisposing genes or influences on top of which a relatively rare ‘second hit’ leads to the development of autoimmunity. In anti-GBM disease this appears to have a self-perpetuating, accelerating component, that may be to do with antibodies and altered antigen presentation. Lymphocyte depletion may also predispose to the disease. A number of second hits have been identified and they seem to share a theme of damage to the glomerulus. There may be a prolonged (months to years) and usually subclinical phase in anti-GBM disease in which usually relatively low level antibody titres are associated with variable haematuria, sometimes minor pulmonary haemorrhage, but often no symptoms. Damage to the lung seems to determine whether there is a pulmonary component to the disease. Without pulmonary damage caused typically by smoking, inhalation of other fumes, and potentially infection or oxygen toxicity, the disease remains an isolated kidney disease. Antibodies appear to be an important component of the disease, but cell-mediated immunity is also critical to the clinical picture. In animal models, cell-mediated immunity triggered by the GBM antigen can cause severe renal damage in the absence of pathogenic antibody. The development of specific antibody also requires T-cell sensitization and help, and suppressing the response is likely to require suppressing both antibody and cell-mediated immunity. Antibodies recognize one major and some other epitopes, which are now well described. T-cell epitopes are becoming better understood. Evidence from animal models also suggests that the damage in anti-GBM disease is dependent on complement, macrophages, and neutrophils.


2014 ◽  
Vol 307 (12) ◽  
pp. L959-L969 ◽  
Author(s):  
Carl T. D'Angio ◽  
Rita M. Ryan

Bronchopulmonary dysplasia (BPD) is an important lung developmental pathophysiology that affects many premature infants each year. Newborn animal models employing both premature and term animals have been used over the years to study various components of BPD. This review describes some of the neonatal rabbit studies that have contributed to the understanding of BPD, including those using term newborn hyperoxia exposure models, premature hyperoxia models, and a term newborn hyperoxia model with recovery in moderate hyperoxia, all designed to emulate aspects of BPD in human infants. Some investigators perturbed these models to include exposure to neonatal infection/inflammation or postnatal malnutrition. The similarities to lung injury in human premature infants include an acute inflammatory response with the production of cytokines, chemokines, and growth factors that have been implicated in human disease, abnormal pulmonary function, disordered lung architecture, and alveolar simplification, development of fibrosis, and abnormal vascular growth factor expression. Neonatal rabbit models have the drawback of limited access to reagents as well as the lack of readily available transgenic models but, unlike smaller rodent models, are able to be manipulated easily and are significantly less expensive than larger animal models.


2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Kiersten Giusto ◽  
Heather Wanczyk ◽  
Todd Jensen ◽  
Christine Finck

ABSTRACT Bronchopulmonary dysplasia (BPD) is a chronic lung disease caused by exposure to high levels of oxygen (hyperoxia) and is the most common complication that affects preterm newborns. At present, there is no cure for BPD. Infants can recover from BPD; however, they will suffer from significant morbidity into adulthood in the form of neurodevelopmental impairment, asthma and emphysematous changes of the lung. The development of hyperoxia-induced lung injury models in small and large animals to test potential treatments for BPD has shown some success, yet a lack of standardization in approaches and methods makes clinical translation difficult. In vitro models have also been developed to investigate the molecular pathways altered during BPD and to address the pitfalls associated with animal models. Preclinical studies have investigated the efficacy of stem cell-based therapies to improve lung morphology after damage. However, variability regarding the type of animal model and duration of hyperoxia to elicit damage exists in the literature. These models should be further developed and standardized, to cover the degree and duration of hyperoxia, type of animal model, and lung injury endpoint, to improve their translational relevance. The purpose of this Review is to highlight concerns associated with current animal models of hyperoxia-induced BPD and to show the potential of in vitro models to complement in vivo studies in the significant improvement to our understanding of BPD pathogenesis and treatment. The status of current stem cell therapies for treatment of BPD is also discussed. We offer suggestions to optimize models and therapeutic modalities for treatment of hyperoxia-induced lung damage in order to advance the standardization of procedures for clinical translation.


Sign in / Sign up

Export Citation Format

Share Document