DAMAGE DIAGNOSIS AND ASSESSMENT OF REMAINING FATIGUE LIFE OF OLD STEEL BRIDGES

1989 ◽  
pp. 376-383 ◽  
Author(s):  
K. Brandes
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
X. W. Ye ◽  
Y. H. Su ◽  
J. P. Han

Fatigue is among the most critical forms of damage potentially occurring in steel bridges, while accurate assessment or prediction of the fatigue damage status as well as the remaining fatigue life of steel bridges is still a challenging and unsolved issue. There have been numerous investigations on the fatigue damage evaluation and life prediction of steel bridges by use of deterministic or probabilistic methods. The purpose of this review is devoted to presenting a summary on the development history and current status of fatigue condition assessment of steel bridges, containing basic aspects of fatigue, classical fatigue analysis methods, data-driven fatigue life assessment, and reliability-based fatigue condition assessment.


2006 ◽  
Vol 324-325 ◽  
pp. 435-438 ◽  
Author(s):  
Chun Sheng Wang ◽  
Jian Guo Nie ◽  
Ai Rong Chen ◽  
Wei Zhen Chen ◽  
Yue Xu

There are many old steel bridges on Chinese transportation lines, which keep their normal traffic service function. The old bridges are often required to carry an increasing volume of traffic and heavier vehicles than the original design, so bridge management departments pay more attention to the actual remaining fatigue life of such structures. Based on probabilistic fracture mechanics theory, the member and the system fatigue failure evaluation models for old steel bridges are all proposed, and the fatigue reliability analysis program is developed using Monte-Carlo. As a case study, the evaluation models are used to predicate the fatigue reliability of Zhejiang Street Bridge. According to evaluation results, the probabilistic remaining fatigue life, safe inspection intervals and maintenance strategy are determined.


2021 ◽  
Vol 5 (3) ◽  
pp. 76
Author(s):  
Ho Sung Kim ◽  
Saijie Huang

S-N curve characterisation and prediction of remaining fatigue life are studied using polyethylene terephthalate glycol-modified (PETG). A new simple method for finding a data point at the lowest number of cycles for the Kim and Zhang S-N curve model is proposed to avoid the arbitrary choice of loading rate for tensile testing. It was demonstrated that the arbitrary choice of loading rate may likely lead to an erroneous characterisation for the prediction of the remaining fatigue life. The previously proposed theoretical method for predicting the remaining fatigue life of composite materials involving the damage function was verified at a stress ratio of 0.4 for the first time. Both high to low and low to high loadings were conducted for predicting the remaining fatigue lives and a good agreement between predictions and experimental results was found. Fatigue damage consisting of cracks and whitening is described.


Sign in / Sign up

Export Citation Format

Share Document