scholarly journals S-N Curve Characterisation for Composite Materials and Prediction of Remaining Fatigue Life Using Damage Function

2021 ◽  
Vol 5 (3) ◽  
pp. 76
Author(s):  
Ho Sung Kim ◽  
Saijie Huang

S-N curve characterisation and prediction of remaining fatigue life are studied using polyethylene terephthalate glycol-modified (PETG). A new simple method for finding a data point at the lowest number of cycles for the Kim and Zhang S-N curve model is proposed to avoid the arbitrary choice of loading rate for tensile testing. It was demonstrated that the arbitrary choice of loading rate may likely lead to an erroneous characterisation for the prediction of the remaining fatigue life. The previously proposed theoretical method for predicting the remaining fatigue life of composite materials involving the damage function was verified at a stress ratio of 0.4 for the first time. Both high to low and low to high loadings were conducted for predicting the remaining fatigue lives and a good agreement between predictions and experimental results was found. Fatigue damage consisting of cracks and whitening is described.

2019 ◽  
Vol 29 (3) ◽  
pp. 482-502 ◽  
Author(s):  
JY Jang ◽  
M Mehdizadeh ◽  
MM Khonsari

A new nondestructive method to estimate the remaining fatigue life of a fatigue specimen with unknown knowledge of the loading history is presented. It requires only one short-time excitation test. The method utilizes the concept of damage parameter and the temperature rise to reliably predict the remaining number of cycles before fracture. A generalized procedure and numerous experimentally verified examples are presented. It is shown that the method can be applied to both constant and variable stress levels. Extensive laboratory tests reveal that the results of the remaining fatigue life predictions are in very good agreement with measurements.


2020 ◽  
Vol 24 (6) ◽  
pp. 961-966
Author(s):  
M. Ekpu

In recent years, composite materials have dominated the electronics industries and other manufacturing industries. Hence, composite materials like aluminium silicon carbide (AlSiC), has been employed to produce heat sinks, which are used mainly to manage heat in electronic devices. However, thermal fatigue of such composite material is a major challenge in maintaining reliability of the device. This paper investigates the  thermomechanical effect of AlSiC composite materials. Finite element method (FEM) was used in the analyses of the composite materials based on the particulate inclusions between 10 – 50% compositions. The thermal profile (-40oC to 85oC) employed in this study is used commercially for consumer products. The fatigue life of the composite material which is based on the stresses and strains parameters were obtained and evaluated. The results from this investigation suggests that the deformations, strains, and stresses reduced with increase in the percentage of particulate inclusions. Also, the fatigue life of the composite material showed that the reliability of the material is increased with higher inclusions. This  investigation demonstrated that 50% particulate inclusions has a better number of cycles to fatigue failure (5.09E+04) when compare to other inclusions. While 10% inclusions has the least fatigue life (4.39E+04) based on this investigation. Keywords: composite material; temperature profile; silicon carbide; thermal fatigue


Author(s):  
T. T. C. Ting

Anisotropic Elasticity offers for the first time a comprehensive survey of the analysis of anisotropic materials that can have up to twenty-one elastic constants. Focusing on the mathematically elegant and technically powerful Stroh formalism as a means to understanding the subject, the author tackles a broad range of key topics, including antiplane deformations, Green's functions, stress singularities in composite materials, elliptic inclusions, cracks, thermo-elasticity, and piezoelectric materials, among many others. Well written, theoretically rigorous, and practically oriented, the book will be welcomed by students and researchers alike.


Author(s):  
Theddeus Tochukwu Akano

Normal oral food ingestion processes such as mastication would not have been possible without the teeth. The human teeth are subjected to many cyclic loadings per day. This, in turn, exerts forces on the teeth just like an engineering material undergoing the same cyclic loading. Over a period, there will be the creation of microcracks on the teeth that might not be visible ab initio. The constant formation of these microcracks weakens the teeth structure and foundation that result in its fracture. Therefore, the need to predict the fatigue life for human teeth is essential. In this paper, a continuum damage mechanics (CDM) based model is employed to evaluate the fatigue life of the human teeth. The material characteristic of the teeth is captured within the framework of the elastoplastic model. By applying the damage evolution equivalence, a mathematical formula is developed that describes the fatigue life in terms of the stress amplitude. Existing experimental data served as a guide as to the completeness of the proposed model. Results as a function of age and tubule orientation are presented. The outcomes produced by the current study have substantial agreement with the experimental results when plotted on the same axes. There is a notable difference in the number of cycles to failure as the tubule orientation increases. It is also revealed that the developed model could forecast for any tubule orientation and be adopted for both young and old teeth.


2019 ◽  
Vol 9 (8) ◽  
pp. 1609 ◽  
Author(s):  
A. K. M. Ashiquzzaman Shawon ◽  
Soon-Chul Ur

Aluminum antimonide is a semiconductor of the Group III-V order. With a wide indirect band gap, AlSb is one of the least discovered of this family of semiconductors. Bulk synthesis of AlSb has been reported on numerous occasions, but obtaining a single phase has always proven to be extremely difficult. This work reports a simple method for the synthesis of single-phase AlSb. Subsequently, consolidation was done into a near single-phase highly dense semiconductor in a form usable for thermoelectric applications. Further, the thermoelectric properties of this system are accounted for the first time. In addition, the mechanical properties of the intermetallic compound are briefly discussed for a possibility of further use.


Author(s):  
Arianna Stimilli ◽  
Cassie Hintz ◽  
Zhijun Li ◽  
Raul Velasquez ◽  
Hussain U. Bahia

Asphalt binder has the ability to self-heal during rest periods when repetitive loading is applied. Studying the effect of rest on fatigue law parameters provides useful insight into the healing capabilities of asphalt binders. Currently, standard testing and analysis procedures to quantify asphalt binder healing capability are limited and difficult to implement in practice. Fatigue is known to depend on both traffic loading and pavement structure. Power law relations (e.g., Nf = Aγ−B) are commonly used for fatigue analysis of pavement materials. Power laws are used to estimate fatigue life (i.e., number of cycles to failure, Nf) as a function of load amplitude (e.g., strain, γ), which is a reflection of the pavement structure. In this study, testing consisted of strain-controlled time sweeps in the dynamic shear rheometer with a single rest period inserted at a specified damage level. With the selected test, the effect of healing on the relationship between fatigue life and strain was investigated. Nine neat and modified binders were tested. Healing testing was conducted at multiple age levels and strains. Healing that resulted from a single rest period had an insignificant effect on fatigue performance compared with modification and oxidative aging. Although this paper highlights the challenges of using few rest periods to predict healing potential, preliminary results of testing with multiple rest periods show the importance of healing. Further investigation is needed to verify the effect of multiple rest periods on binder fatigue.


2021 ◽  
Vol 887 ◽  
pp. 116-122
Author(s):  
A.A. Bryansky ◽  
O.V. Bashkov ◽  
Daria P. Malysheva ◽  
Denis B. Solovev

The paper presents the results of the study of registered acoustic emission (AE) parameters during static deformation and damaging of polymer composite materials (PCM). Mechanical tests were done by a static tension and a static three-point bend, accompanied by an acoustic emission method. The assessment of the loading rate effect on defects formation processes was done by additional static tension test at rate equal half of recommended by the standard and static three-point bend test at rate ten times lower than that calculated by the standard. Clustering by frequency components of the recorded AE signals with a self-organizing Kohonen map was performed. The characteristics of the types of PCM structure damage by the centroids of the obtained clusters are given. Based on the clusters accumulation during mechanical tests, the stages of damage formation for static tension and static three-point bend, the loading rate effect on the process of damage formation are described.


Batteries ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 60 ◽  
Author(s):  
Caihong Liu ◽  
Leon Shaw

In this study, we have proposed a novel concept of hybrid flow batteries consisting of a molten Na-Cs anode and an aqueous NaI catholyte separated by a NaSICON membrane. A number of carbonaceous electrodes are studied using cyclic voltammetry (CV) for their potentials as the positive electrode of the aqueous NaI catholyte. The charge transfer impedance, interfacial impedance and NaSICON membrane impedance of the Na-Cs ‖ NaI hybrid flow battery are analyzed using electrochemical impedance spectroscopy. The performance of the Na-Cs ‖ NaI hybrid flow battery is evaluated through galvanostatic charge/discharge cycles. This study demonstrates, for the first time, the feasibility of the Na-Cs ‖ NaI hybrid flow battery and shows that the Na-Cs ‖ NaI hybrid flow battery has the potential to achieve the following properties simultaneously: (i) An aqueous NaI catholyte with good cycle stability, (ii) a durable and low impedance NaSICON membrane for a large number of cycles, (iii) stable interfaces at both anode/membrane and cathode/membrane interfaces, (iv) a molten Na-Cs anode capable of repeated Na plating and stripping, and (v) a flow battery with high Coulombic efficiency, high voltaic efficiency, and high energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document