COSMOGENIC NUCLIDE DATING | Cosmic Ray Interactions in Minerals

Author(s):  
D. Lal
2021 ◽  
Author(s):  
Marie Bergelin ◽  
Jaakko Putkonen ◽  
Greg Balco ◽  
Dan Morgan ◽  
Ronald K. Matheney ◽  
...  

<p>We have discovered and cored a massive ice mass buried underneath a meter of glacial debris in Ong Valley, Antarctica, which we report here to consist of two stacked ice bodies dated at >2 Ma. Glacial ice is known to be a great archive of atmospheric gasses, chemical compounds, and airborne particles. An ice mass of such antiquity, as reported here, may reveal information about our past which is otherwise unknown.</p><p>We determine the age of the ice directly by dating the dirt suspended within the ice and by dating the till layer covering the ice using cosmogenic nuclide: <sup>10</sup>Be, <sup>26</sup>Al, and <sup>21</sup>Ne. These cosmogenic nuclides are produced by cosmic-ray interactions with minerals near the Earth’s surface, and in this case in suspended dirt embedded in the ice. As the production rate of cosmogenic nuclides decreases rapidly with increasing depth below the Earth’s surface, the cosmogenic nuclide concentration profile yields information about the exposure history and further aid to constrain geological processes such as sublimation rates, and surface erosion rates. We further compare the cosmogenic nuclide model results with mapped glacial moraines adjacent to the current ice, and stable water isotope analysis throughout the core in order to explore the unique history that these two stacked ice masses have.</p><p>We find the uppermost section of this buried ice mass to be >2 Ma old. Large variation of cosmogenic nuclide concentrations downcore and stable water isotopes, suggests that the deepest section of the ice core may belong to a separate, older ice mass that has previously been exposed at the surface. Lateral moraines and measurements of cosmogenic nuclides in glacial debris further up valley suggest that this deeper, older ice may be >2.6 Ma old, and was most likely buried during glacial advancement into Ong Valley < 4 Ma ago.</p>


Author(s):  
Alessandro De Angelis ◽  
Vincent Tatischeff ◽  
Andrea Argan ◽  
Søren Brandt ◽  
Andrea Bulgarelli ◽  
...  

AbstractThe energy range between about 100 keV and 1 GeV is of interest for a vast class of astrophysical topics. In particular, (1) it is the missing ingredient for understanding extreme processes in the multi-messenger era; (2) it allows localizing cosmic-ray interactions with background material and radiation in the Universe, and spotting the reprocessing of these particles; (3) last but not least, gamma-ray emission lines trace the formation of elements in the Galaxy and beyond. In addition, studying the still largely unexplored MeV domain of astronomy would provide for a rich observatory science, including the study of compact objects, solar- and Earth-science, as well as fundamental physics. The technological development of silicon microstrip detectors makes it possible now to detect MeV photons in space with high efficiency and low background. During the last decade, a concept of detector (“ASTROGAM”) has been proposed to fulfil these goals, based on a silicon hodoscope, a 3D position-sensitive calorimeter, and an anticoincidence detector. In this paper we stress the importance of a medium size (M-class) space mission, dubbed “ASTROMEV”, to fulfil these objectives.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


1971 ◽  
Vol 4 (1) ◽  
pp. 37-45 ◽  
Author(s):  
E. W. Cowan ◽  
K. Matthews

2020 ◽  
Vol 49 (2) ◽  
pp. 107-118
Author(s):  
Philipp Häuselmann ◽  
◽  
Lukas Plan ◽  
Peter Pointner ◽  
Markus Fiebig ◽  
...  

Karstic caves are created by water eroding and corroding rocks that can be dissolved. Since both the spring areas of caves (normally at the valley bottom) as well as the recharge is controlled by superficial processes, the morphology of the cave bears strong links to these influences. Lowering of local base levels promotes the development of horizontal phreatic cave passages at progressively lower elevations, resulting in the formation of multi-level karst systems. Upon the next lowering of base level, these upper systems become fossilized, and sediment trapped within them may remain preserved for millions of years. Dating these sediments gives clues regarding the time when the passages were last active, and thus may yield age information for old valley floors. The present paper presents cosmogenic nuclide datings of twelve samples from eight caves in the central part of the Northern Calcareous Alps of Austria. Besides three samples that gave no results, most of the obtained ages are at the Mio-Pliocene boundary or within the Pliocene, as was expected before sampling. No multi-level caves could be sampled at different elevations, thus, the obtained valley deepening rates are averages between the age of sediment deposition and the present-day valley floor. However, the valley deepening rates of 0.12 to 0.21 km/Ma are in accordance to previous findings and corroborate a comparatively slow evolution of base level lowering in the Eastern Alps compared to the fast (Late Quaternary) evolution in the Central and Western Alps.


Sign in / Sign up

Export Citation Format

Share Document