Ancient Ice Buried Below a Meter of Regolith; Ong Valley, Antarctica

Author(s):  
Marie Bergelin ◽  
Jaakko Putkonen ◽  
Greg Balco ◽  
Dan Morgan ◽  
Ronald K. Matheney ◽  
...  

<p>We have discovered and cored a massive ice mass buried underneath a meter of glacial debris in Ong Valley, Antarctica, which we report here to consist of two stacked ice bodies dated at >2 Ma. Glacial ice is known to be a great archive of atmospheric gasses, chemical compounds, and airborne particles. An ice mass of such antiquity, as reported here, may reveal information about our past which is otherwise unknown.</p><p>We determine the age of the ice directly by dating the dirt suspended within the ice and by dating the till layer covering the ice using cosmogenic nuclide: <sup>10</sup>Be, <sup>26</sup>Al, and <sup>21</sup>Ne. These cosmogenic nuclides are produced by cosmic-ray interactions with minerals near the Earth’s surface, and in this case in suspended dirt embedded in the ice. As the production rate of cosmogenic nuclides decreases rapidly with increasing depth below the Earth’s surface, the cosmogenic nuclide concentration profile yields information about the exposure history and further aid to constrain geological processes such as sublimation rates, and surface erosion rates. We further compare the cosmogenic nuclide model results with mapped glacial moraines adjacent to the current ice, and stable water isotope analysis throughout the core in order to explore the unique history that these two stacked ice masses have.</p><p>We find the uppermost section of this buried ice mass to be >2 Ma old. Large variation of cosmogenic nuclide concentrations downcore and stable water isotopes, suggests that the deepest section of the ice core may belong to a separate, older ice mass that has previously been exposed at the surface. Lateral moraines and measurements of cosmogenic nuclides in glacial debris further up valley suggest that this deeper, older ice may be >2.6 Ma old, and was most likely buried during glacial advancement into Ong Valley < 4 Ma ago.</p>

Author(s):  
Rainer Wieler

Cosmogenic nuclides are produced by the interaction of energetic elementary particles of galactic (or solar) cosmic radiation and their secondaries with atomic nuclei in extraterrestrial or terrestrial material. Cosmogenic nuclides usually are observable only for some noble gas isotopes, whose natural abundances in the targets of interest are exceedingly low; some radioactive isotopes with half-lives mostly in the million-year range; and a few stable nuclides of elements, such as Gd and Sm, whose abundance is sizably modified by reactions with low energy secondary cosmic ray neutrons. In solid matter, the mean attenuation length of galactic cosmic ray protons is on the order of 50 cm. Therefore, cosmogenic nuclides are a major tool in studying the history of small objects in space and of matter near the surfaces of larger parent bodies. A classical application is to measure “exposure ages” of meteorites, namely the time they spent as a small body in interplanetary space. In some cases, also the previous history of the future meteorite in its parent-body regolith can be constrained. Such information helps to understand delivery mechanisms of meteorites from their parent asteroids or parent planets and to constrain the number of ejection events responsible for the collected meteorites. Cosmogenic nuclides in lunar samples from known depths of up to ~2 m serve to study the deposition and mixing history of the lunar regolith over hundreds of millions of years, as well as to calibrate nuclide production models. Present and future sample return missions rely on cosmogenic nuclide measurements as important tools to constrain the sample’s exposure history or loss rates of their parent body surfaces to space. The first data from cosmogenic noble gas isotopes measured on the surface of Mars demonstrate that the exposure and erosional history of planetary bodies can be obtained by in-situ analyses. For the foreseeable future, exposure ages of presolar grains in meteorites are presumably the only means to quantitatively constrain their presolar history. In some cases, irradiation effects of energetic particles from the early sun can be detected in early solar system condensates, confirming that the early sun was likely much more active than today, as expected from observations of young stars. The ever-increasing precision of isotope analyses also reveals tiny isotopic anomalies induced by cosmic-ray effects in several elements of interest in cosmochemistry, which need to be recognized and corrected for. Cosmogenic nuclide studies rely on the knowledge of their production rates, which depend on the elemental composition of a sample and its “shielding” during irradiation, that is, its position within an irradiated object and for meteorites their preatmospheric size. The physics of cosmogenic nuclide production is basically well understood and has led to sophisticated production models. They are most successful if a sample’s shielding can be constrained by the analyses of several cosmogenic nuclides with different depth dependencies of their production rates. Cosmogenic nuclides are also an important tool in Earth Sciences. The foremost example is 14C produced in the atmosphere and incorporated into organic material, which is used for dating. Cosmogenic radionuclides and noble gases produced in-situ in near surface samples, mostly by secondary cosmic-ray neutrons, are an important tool in quantitative geomorphology and related fields.


2004 ◽  
Vol 28 (1) ◽  
pp. 1-42 ◽  
Author(s):  
Hermione A.P. Cockburn ◽  
Michael A. Summerfield

Cosmogenic isotope analysis involves the measurement of cosmogenic nuclides that have accumulated in the upper few metres of the Earth’s surface as a result of interactions between cosmic rays and target elements. The concentrations of these cosmogenic nuclides can provide quantitative estimates of the timing and rate of geomorphic processes. In dating applications the concentration of cosmogenic nuclides is interpreted as reflecting the time elapsed since a surface exposure event. However, over most of the Earth’s surface for most of the time the landsurface experiences incremental denudation and in these circumstances cosmogenic nuclide concentrations are related to the rate of denudation. Applications of event dating using cosmogenic isotopes include constructional landforms such as volcanic and depositional features, fault displacement, meteorite impacts, rapid mass movement, bedrock surfaces rapidly eroded by fluvial or wave action or exposed by glacial retreat, and the burial of sediment or ice. Strategies for quantifying rates of incremental change include estimates of denudation rates from site-specific samples and from fluvial sediment samples reflecting catchment-wide rates, and measurements of cosmogenic nuclide concentrations in soils and regolith to quantify rates of rock weathering. The past decade has seen a rapid growth in applications of cosmogenic isotope analysis to a wide range of geomorphological problems, and the technique is now playing a major role in dating and quantifying rates of landscape change over timescales of several thousands to several millions of years.


2004 ◽  
Vol 10 (5-6) ◽  
pp. 194-196
Author(s):  
V.I. Voloshin ◽  
◽  
A.S. Levenko ◽  
N.N. Peremetchik ◽  
◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4804
Author(s):  
Marcin Piekarczyk ◽  
Olaf Bar ◽  
Łukasz Bibrzycki ◽  
Michał Niedźwiecki ◽  
Krzysztof Rzecki ◽  
...  

Gamification is known to enhance users’ participation in education and research projects that follow the citizen science paradigm. The Cosmic Ray Extremely Distributed Observatory (CREDO) experiment is designed for the large-scale study of various radiation forms that continuously reach the Earth from space, collectively known as cosmic rays. The CREDO Detector app relies on a network of involved users and is now working worldwide across phones and other CMOS sensor-equipped devices. To broaden the user base and activate current users, CREDO extensively uses the gamification solutions like the periodical Particle Hunters Competition. However, the adverse effect of gamification is that the number of artefacts, i.e., signals unrelated to cosmic ray detection or openly related to cheating, substantially increases. To tag the artefacts appearing in the CREDO database we propose the method based on machine learning. The approach involves training the Convolutional Neural Network (CNN) to recognise the morphological difference between signals and artefacts. As a result we obtain the CNN-based trigger which is able to mimic the signal vs. artefact assignments of human annotators as closely as possible. To enhance the method, the input image signal is adaptively thresholded and then transformed using Daubechies wavelets. In this exploratory study, we use wavelet transforms to amplify distinctive image features. As a result, we obtain a very good recognition ratio of almost 99% for both signal and artefacts. The proposed solution allows eliminating the manual supervision of the competition process.


Author(s):  
Alessandro De Angelis ◽  
Vincent Tatischeff ◽  
Andrea Argan ◽  
Søren Brandt ◽  
Andrea Bulgarelli ◽  
...  

AbstractThe energy range between about 100 keV and 1 GeV is of interest for a vast class of astrophysical topics. In particular, (1) it is the missing ingredient for understanding extreme processes in the multi-messenger era; (2) it allows localizing cosmic-ray interactions with background material and radiation in the Universe, and spotting the reprocessing of these particles; (3) last but not least, gamma-ray emission lines trace the formation of elements in the Galaxy and beyond. In addition, studying the still largely unexplored MeV domain of astronomy would provide for a rich observatory science, including the study of compact objects, solar- and Earth-science, as well as fundamental physics. The technological development of silicon microstrip detectors makes it possible now to detect MeV photons in space with high efficiency and low background. During the last decade, a concept of detector (“ASTROGAM”) has been proposed to fulfil these goals, based on a silicon hodoscope, a 3D position-sensitive calorimeter, and an anticoincidence detector. In this paper we stress the importance of a medium size (M-class) space mission, dubbed “ASTROMEV”, to fulfil these objectives.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


1971 ◽  
Vol 4 (1) ◽  
pp. 37-45 ◽  
Author(s):  
E. W. Cowan ◽  
K. Matthews

Sign in / Sign up

Export Citation Format

Share Document