SEA-LEVELS, LATE QUATERNARY | Tectonics and Relative Sea-Level Change

Author(s):  
A.R. Nelson
2021 ◽  
Author(s):  
Alyssa Victoria Pietraszek ◽  
Oded Katz ◽  
Jacob Sharvit ◽  
Beverly Goodman-Tchernov

<p>With the impending threat of continued sea-level rise and coastal inundation, it is important to understand the short- and long-term factors affecting sea-level in a particular region. Such a feat can be accomplished by turning to indicators of past sea-levels. This study aims to highlight the utility of archaeological indicators in sea-level reconstructions, using Akko on Israel’s northern Mediterranean micro-tidal coast as a case study. Here, installations belonging to the maritime metropolis’ Hellenistic Period (3rd to 1st centuries BCE) harbor, which have well-constrained chronological and elevational limitations, were identified at depths averaging 1.1 to 1.2 meters below present sea-level (mbpsl). These features would have been located sub-aerially during the time of their construction and use, indicating a change in relative sea-level in the area since this time. Utilizing a multiple proxy approach incorporating marine sedimentological and geoarchaeological methodologies with previously recorded regional data, three possible explanations for this apparent sea-level change were assessed: structural deterioration, sea-level rise, and vertical tectonic movements. This study revealed that, although signs of structural deterioration are apparent in some parts of the quay, this particular harbor installation is well-established as in situ as it has a continuous upper surface and its southern edge is built directly on the underlying bedrock. Consequently, the harbor’s current submarine position can instead be attributed to sea-level change and/or vertical tectonic displacements. While this amount of sea-level rise (over 1 m) is in agreement with glacio-hydro-eustatic values suggested for other areas of the Mediterranean, it falls below those previously reported locally. In addition, most studies suggest that the tectonic movement along this stretch of coastline is negligible. These new data provide a reliable relative sea-level marker with very little error with regard to maximum sea-level, thereby renewing the overall consideration of the tectonic and sea-level processes that have been active along this stretch of coastline during the last 2,500 years.</p>


1982 ◽  
Vol 19 (3) ◽  
pp. 597-618 ◽  
Author(s):  
John Clague ◽  
John R. Harper ◽  
R. J. Hebda ◽  
D. E. Howes

Late Quaternary sea-level fluctuations on the British Columbia coast have been established from studies of terrestrial and marine sediments and landforms. These studies indicate that the sea-level history of mainland British Columbia and eastern Vancouver Island is very different from that of the Queen Charlotte Islands and western Vancouver Island. Specifically, in the former areas, there was a rapid rise of submerged coastal lowlands between about 13 000 and 10 000 years ago. Emergence culminated about 6000–9000 years ago, depending on the locality, when the sea, relative to the land, was 12 m or more lower than at present in some areas. During middle and late Holocene time, relative sea level rose on the mainland coast and at least locally on eastern Vancouver Island, resulting in inundation of coastal archaeological sites and low-lying terrestrial vegetation. Tidal records and precise levelling suggest ongoing submergence of at least part of this region.In contrast, shorelines on the Queen Charlotte Islands were below present from before 13 700 years ago until approximately 9500–10 000 years ago. A transgression at the close of the Pleistocene climaxed about 7500–8500 years ago when relative sea level probably was about 15 m above present in most areas. Most of the emergence that followed apparently occurred in the last 5000–6000 years. There has been a similar pattern of emergence on the west coast of Vancouver Island during late Holocene time.The above patterns of late Quaternary sea-level change are attributed to complex isostatic response to downwasting and retreat of the late Wisconsin Cordilleran Ice Sheet, to transfers of water from melting ice sheets to oceans, and to plate interactions on the British Columbia continental margin. Late Pleistocene and early Holocene crustal movements were dominantly isostatic. Although the recent regression on the outer coast likely is due, at least in part, to tectonic uplift, some late Holocene sea-level change in this area and elsewhere on the British Columbia coast may be either eustatic in nature or a residual isostatic response to deglaciation, which occurred thousands of years earlier.


2020 ◽  
Author(s):  
Nicole Khan ◽  
Erica Ashe ◽  
Robert Kopp ◽  
Ben Horton ◽  

<p>Determining the rates, mechanisms and geographic variability of sea-level change is a priority science question for the next decade of ocean research. To address these research priorities, the HOLocene SEA-level variability (HOLSEA) working group is developing the first standardized global synthesis of Holocene relative sea-level data to: (1) estimate the magnitudes and rates of global mean sea-level change during the Holocene; and (2) identify trends in spatial variability and decipher the processes responsible for geographic differences in relative sea-level change.</p><p>Here we present the efforts of the working group to compile the database, which includes over 12,000 sea-level index points and limiting data from a range of different indicators across seven continents from the Last Glacial Maximum to present. We follow a standard protocol that incorporates full consideration of vertical and temporal uncertainty for each sea-level index point, including uncertainties associated with the relationship of each indicator to past sea-level and the methods used to date each indicator. We highlight important challenges overcome to aggregate the standardized global synthesis, and discuss those that still remain. Finally. we apply a spatio-temporal empirical hierarchical statistical model to the database to estimate global sea-level variability and spatial patterns in relative sea level and its rates of change, and consider their driving mechanisms. Long-term, this effort will enhance predictions of 21st century sea-level rise, and provide a vital contribution to the assessment of natural hazards with respect to sea-level rise.</p>


2000 ◽  
Vol 89 (3) ◽  
pp. 550-562 ◽  
Author(s):  
Leonid Polyak ◽  
Mikhail Levitan ◽  
Valery Gataullin ◽  
Tatiana Khusid ◽  
Valery Mikhailov ◽  
...  

2011 ◽  
Vol 26 (7) ◽  
pp. 768-768
Author(s):  
M. J. Roberts ◽  
J. D. Scourse ◽  
J. D. Bennell ◽  
D. G. Huws ◽  
C. F. Jago ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document