The space-charge effect in optimization for electron gun

Author(s):  
K.R. Hong ◽  
H.B. Lee ◽  
H.K. Jung ◽  
S.Y. Hahn
2013 ◽  
Vol 652-654 ◽  
pp. 2391-2394
Author(s):  
Dong Hui Zhang ◽  
Chun Dong Liu ◽  
Jian Ming Liang ◽  
Chang Sheng Li

The concept of maximal and minimal displacement value of the electron-beam was proposed considering the influence of space charge effect based on the displacement value of the electron-beam in the process of magnetic deflection scanning in the ideal condition. The deduction of mathematical model of the maximal and minimal displacement value was accomplished. The position of the beam spot can be more accurately controlled by the model, thus it is made sure that un-molten metal is bombarded by the beam spot accurately, which can increase the melt quality.


2014 ◽  
Vol 32 (3) ◽  
pp. 487-493 ◽  
Author(s):  
Y.F. Kang ◽  
J. Zhao ◽  
J.Y. Zhao ◽  
T.T. Tang

AbstractThe problem of initial thermal velocity and the space charge effect of electron guns in numerical simulations have been investigated deeply. In general, the current software can meet the engineering requirements. However, the electron's initial thermal velocity and the space charge effect lack sufficient consideration. The above two factors significantly limit the performances of electron guns. Moreover, the parameters of electron guns are approximated based on a limited number of electron trajectories. Thus, the statistical distribution of the beam electron resulting from its initial thermal velocity is not considered adequately in present software. This paper introduces the equivalent meridional projected trajectory equation and the curvilinear axis evolution theory of the current density of toroidal electron sub-beam, and subsequently the current and charge density distributions in electron guns can be derived through iteration calculation. Based upon, the virtual crossover of an electron gun is determined by its current density distribution. As well as, a relevant numerical algorithm is developed and the related program is modified based on the popular commercial software SOURCE. Tungsten cathode guns, LaB6 cathode guns, field mission guns and Pierce guns are simulated respectively by examples. The calculations prove that the modified software is effective and practical.


2014 ◽  
Vol 11 (2) ◽  
pp. 572-576
Author(s):  
Baghdad Science Journal

A computational investigation is carried out in the field of charged –particle optics with the aid of numerical analysis method using the personal computer. The work is concerned with the design of electron gun with space-charge effect. The Finite element method (FEM) used in the solution of Poison's equation for determine the axial potential distribution of the two-electrode immersion lens operated under zero magnification condition , and from the solution of the paraxial ray equation the optical properties such as the focal length , spherical and chromatic aberration coefficients are determined, also a calculation of the brightness and perveance for the lens. The electrodes geometry was determined in two and three dimension with the aid of new drawing software called SIMION 7 and the electron beam trajectory under zero magnification conditions has been determine for these electrodes.


Particles ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 238-252 ◽  
Author(s):  
Siriwan Krainara ◽  
Shuya Chatani ◽  
Heishun Zen ◽  
Toshiteru Kii ◽  
Hideaki Ohgaki

A THz coherent undulator radiation (THz-CUR) source has been developed at the Institute of Advanced Energy, Kyoto University. A photocathode Radio-Frequency (RF) gun and a bunch compressor chicane are used for generating short-bunch electron beams. When the electron beam energy is low, the space-charge effect strongly degrades the beam quality, such as the bunch length and the energy spread at the high bunch charge condition at around 160 pC, and results in the reduction of the highest frequency and the maximum radiated power of the THz-CUR. To mitigate the space charge effect, we have investigated the dependence of the electron beam quality on the laser distribution in transverse and longitudinal directions by using a numerical simulation code, General Particle Tracer GPT. The manipulation of the laser distribution has potential for improving the performance of the THz-CUR source. The electron bunch was effectively compressed with the chicane magnet when the laser transverse distribution was the truncated Gaussian profile, illuminating a cathode. Moreover, the compressed electron bunch was shortened by enlarging the laser pulse width. Consequently, an enhancement of the radiated power of the THz-CUR has been indicated.


Sign in / Sign up

Export Citation Format

Share Document