On the Declarative Semantics of Logic Programs with Negation

Author(s):  
Vladimir Lifschitz
2009 ◽  
Vol 9 (3) ◽  
pp. 309-341 ◽  
Author(s):  
VAN HUNG LE ◽  
FEI LIU ◽  
DINH KHANG TRAN

AbstractThe paper introduces fuzzy linguistic logic programming, which is a combination of fuzzy logic programming, introduced by P. Vojtáš, and hedge algebras in order to facilitate the representation and reasoning on human knowledge expressed in natural languages. In fuzzy linguistic logic programming, truth values are linguistic ones, e.g., VeryTrue, VeryProbablyTrue and LittleFalse, taken from a hedge algebra of a linguistic truth variable, and linguistic hedges (modifiers) can be used as unary connectives in formulae. This is motivated by the fact that humans reason mostly in terms of linguistic terms rather than in terms of numbers, and linguistic hedges are often used in natural languages to express different levels of emphasis. The paper presents: (a) the language of fuzzy linguistic logic programming; (b) a declarative semantics in terms of Herbrand interpretations and models; (c) a procedural semantics which directly manipulates linguistic terms to compute a lower bound to the truth value of a query, and proves its soundness; (d) a fixpoint semantics of logic programs, and based on it, proves the completeness of the procedural semantics; (e) several applications of fuzzy linguistic logic programming; and (f) an idea of implementing a system to execute fuzzy linguistic logic programs.


1995 ◽  
Vol 24 (4) ◽  
pp. 359-386 ◽  
Author(s):  
Anthony Karel Seda

2007 ◽  
Vol 7 (3) ◽  
pp. 301-353 ◽  
Author(s):  
NIKOLAY PELOV ◽  
MARC DENECKER ◽  
MAURICE BRUYNOOGHE

AbstractIn this paper, we present a framework for the semantics and the computation of aggregates in the context of logic programming. In our study, an aggregate can be an arbitrary interpreted second order predicate or function. We define extensions of the Kripke-Kleene, the well-founded and the stable semantics for aggregate programs. The semantics is based on the concept of a three-valuedimmediate consequence operatorof an aggregate program. Such an operatorapproximatesthe standard two-valued immediate consequence operator of the program, and induces a unique Kripke-Kleene model, a unique well-founded model and a collection of stable models. We study different ways of defining such operators and thus obtain a framework of semantics, offering different trade-offs betweenprecisionandtractability. In particular, we investigate conditions on the operator that guarantee that the computation of the three types of semantics remains on the same level as for logic programs without aggregates. Other results show that, in practice, even efficient three-valued immediate consequence operators which are very low in the precision hierarchy, still provide optimal precision.


1993 ◽  
Vol 103 (1) ◽  
pp. 86-113 ◽  
Author(s):  
M. Falaschi ◽  
G. Levi ◽  
M. Martelli ◽  
C. Palamidessi

Author(s):  
Bart Bogaerts ◽  
Joost Vennekens ◽  
Marc Denecker

In many knowledge representation formalisms, a constructive semantics is defined based on sequential applications of rules or of a semantic operator. These constructions often share the property that rule applications must be delayed until it is safe to do so: until it is known that the condition that triggers the rule will remain to hold. This intuition occurs for instance in the well-founded semantics of logic programs and in autoepistemic logic. In this paper, we formally define the safety criterion algebraically. We study properties of so-called safe inductions and apply our theory to logic programming and autoepistemic logic. For the latter, we show that safe inductions manage to capture the intended meaning of a class of theories on which all classical constructive semantics fail.


Sign in / Sign up

Export Citation Format

Share Document