Significance of Local Buckling for Steel Frames Under Fire Conditions

Author(s):  
A.Y. Elghazouli ◽  
B.A. Izzuddin
1999 ◽  
Vol 26 (2) ◽  
pp. 156-167 ◽  
Author(s):  
D I Nwosu ◽  
VKR Kodur

A state-of-the-art review of the behaviour of steel frame structures in fire is presented. Results from different studies indicate that the behaviour of a complete structure is different from that of a single structural member under fire conditions from the point of view of fire resistance. Earlier studies also show that analysis and design of steel structures against fire based on their overall behaviour could lead to a reduction or the elimination of applied fire protection to certain structural members. The effects of continuity, restraint conditions, and load ratio on the fire resistance of frame structures are discussed. The beneficial aspects derived from considering overall structural rather than single-member behaviour in fire are illustrated through the analysis on two one-bay, one-storey, unprotected steel portal frames, a column, and a beam. Also comparison is made between the performance of a beam with different end restraints in fire. Results from the analyses indicate that the fire resistance of a member is increased when it is considered as part of a structure compared with when it is considered as a single member.Key words: steel, frames, fire resistance, buckling, loads, overall structural behaviour.


2005 ◽  
Vol 90 (7) ◽  
pp. 1-8 ◽  
Author(s):  
Markus Knobloch ◽  
Mario Fontana

Author(s):  
Li Guoqiang ◽  
Jiang Shouchao ◽  
B.S. Choo

2002 ◽  
Vol 2 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Pether Inglessis ◽  
Samuel Medina ◽  
Alexis Lopez ◽  
Rafael Febres ◽  
Julio Florez-Lopez

2014 ◽  
Vol 41 (1) ◽  
pp. 17-31 ◽  
Author(s):  
Mohammad Al Amin Siddique ◽  
Ashraf A. El Damatty ◽  
Ayman M. El Ansary

This paper reports the results of an investigation conducted to assess the effectiveness of using glass fiber reinforced polymer (GFRP) plates to enhance the overstrength and ductility factors of moment resisting steel frames. The GFRP plates are bonded to the flanges of steel beams of the frame with an aim to enhance their local buckling capacities and consequently their ductility. The flexural behaviour of GFRP retrofitted beams is first determined using a nonlinear finite element model developed in-house. In this numerical model, consistent shell elements are used to simulate the flanges and web of the steel beam as well as the GFRP plate. The interface between the steel and the GFRP plate is simulated using a set of continuous linear spring system representing both the shear and peeling stiffness of the adhesive based on values obtained from a previous experimental study. The moment–rotation characteristics of the retrofitted beams are then implemented into the frame model to carry out nonlinear static (pushover) analyses. The seismic performance level of the retrofitted frames in terms of overstrength and ductility factors is then compared with that of the bare frame. The results show a significant enhancement in strength and ductility capacities of the retrofitted frames, especially when the beams of the frame are slender.


Sign in / Sign up

Export Citation Format

Share Document