Analysis of Nonlinear Behavior of Steel Frames under Local Fire Conditions

Author(s):  
Shen Zu-Yan ◽  
Zhao Jin-Cheng
1999 ◽  
Vol 26 (2) ◽  
pp. 156-167 ◽  
Author(s):  
D I Nwosu ◽  
VKR Kodur

A state-of-the-art review of the behaviour of steel frame structures in fire is presented. Results from different studies indicate that the behaviour of a complete structure is different from that of a single structural member under fire conditions from the point of view of fire resistance. Earlier studies also show that analysis and design of steel structures against fire based on their overall behaviour could lead to a reduction or the elimination of applied fire protection to certain structural members. The effects of continuity, restraint conditions, and load ratio on the fire resistance of frame structures are discussed. The beneficial aspects derived from considering overall structural rather than single-member behaviour in fire are illustrated through the analysis on two one-bay, one-storey, unprotected steel portal frames, a column, and a beam. Also comparison is made between the performance of a beam with different end restraints in fire. Results from the analyses indicate that the fire resistance of a member is increased when it is considered as part of a structure compared with when it is considered as a single member.Key words: steel, frames, fire resistance, buckling, loads, overall structural behaviour.


Author(s):  
Li Guoqiang ◽  
Jiang Shouchao ◽  
B.S. Choo

2015 ◽  
Vol 744-746 ◽  
pp. 71-77
Author(s):  
Ying Yu ◽  
Lin Jin ◽  
Ping Xia

The Finite Particle Method (FPM), based on the Vector Mechanics, is a new structural analysis method. This paper explores the possibility of the proposed method being applied in the dynamic nonlinear analysis of semi-rigid steel frames. Taking the two dimensional beam element as an example, the formulations of the FPM to calculate the dynamic and geometric nonlinear problems are derived. Spring model with zero-length is adopted to simulate the relationship between internal forces and deformations of the semi-rigid steel connections. The nonlinear strengthen spring model is used to analyze the nonlinear behavior of the semi-rigid connection. Explicit time integrations are used to solve equilibrium equations. Comparing to traditional Finite Element Method, iterations and special modifications are not needed during the dynamic nonlinear analysis, which is more advantageous in structural complex behavior analysis. Two numerical examples are presented to analyze the behaviors of rigid and semi-rigid steel frames, and behaviors of linear and nonlinear semi-rigid connections, which demonstrate the accuracy and applicability of this method in dynamic nonlinear analysis.


Sign in / Sign up

Export Citation Format

Share Document