Circular Dichroism in the Transmission Electron Microscope

Author(s):  
P SCHATTSCHNEIDER ◽  
S RUBINO ◽  
C HEBERT
Nature ◽  
2006 ◽  
Vol 441 (7092) ◽  
pp. 486-488 ◽  
Author(s):  
P. Schattschneider ◽  
S. Rubino ◽  
C. Hébert ◽  
J. Rusz ◽  
J. Kuneš ◽  
...  

2007 ◽  
Vol 1026 ◽  
Author(s):  
Stefano Rubino ◽  
Peter Schattschneider ◽  
Michael Stöger-Pollach ◽  
Cécile Hébert ◽  
Ján Rusz ◽  
...  

AbstractA new technique called Energy-loss Magnetic Chiral Dichroism (EMCD) has recently been developed [1] to measure Magnetic Circular Dichroism (MCD) in the Transmission Electron Microscope (TEM) with a spatial resolution of 10 nm. This novel technique is the TEM counterpart of X-ray Magnetic Circular Dichroism (XMCD), which is widely used for the characterization of magnetic materials with synchrotron radiation.In this paper we describe several experimental methods which can be used to measure the EMCD signal [1-5] and give a review of the recent improvements of this new investigation tool. The dependence of the EMCD on several experimental conditions (such as thickness, relative orientation of beam and sample, collection and convergence angle) is investigated in the transition metals Iron, Cobalt and Nickel. Different scattering geometries are illustrated; their advantages and disadvantages are detailed, together with current limitations. The next realistic perspectives of this technique will consist in measuring atomic specific magnetic moments, using suitable spin and orbital sum rules [4,6], with a resolution down to 2-3 nm.


Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Author(s):  
Sanford H. Vernick ◽  
Anastasios Tousimis ◽  
Victor Sprague

Recent electron microscope studies have greatly expanded our knowledge of the structure of the Microsporida, particularly of the developing and mature spore. Since these studies involved mainly sectioned material, they have revealed much internal detail of the spores but relatively little surface detail. This report concerns observations on the spore surface by means of the transmission electron microscope.


Author(s):  
H. Tochigi ◽  
H. Uchida ◽  
S. Shirai ◽  
K. Akashi ◽  
D. J. Evins ◽  
...  

A New High Excitation Objective Lens (Second-Zone Objective Lens) was discussed at Twenty-Sixth Annual EMSA Meeting. A new commercially available Transmission Electron Microscope incorporating this new lens has been completed.Major advantages of the new instrument allow an extremely small beam to be produced on the specimen plane which minimizes specimen beam damages, reduces contamination and drift.


Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Sign in / Sign up

Export Citation Format

Share Document