spore surface
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 25)

H-INDEX

27
(FIVE YEARS 4)

Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Johnny Chun-Chau Sung ◽  
Ying Liu ◽  
Kam-Chau Wu ◽  
Man-Chung Choi ◽  
Chloe Ho-Yi Ma ◽  
...  

Various types of vaccines, such as mRNA, adenovirus, and inactivated virus by injection, have been developed to prevent SARS-CoV-2 infection. Although some of them have already been approved under the COVID-19 pandemic, various drawbacks, including severe side effects and the requirement for sub-zero temperature storage, may hinder their applications. Bacillus subtilis (B. subtilis) is generally recognized as a safe and endotoxin-free Gram-positive bacterium that has been extensively employed as a host for the expression of recombinant proteins. Its dormant spores are extraordinarily resistant to the harsh environment in the gastrointestinal tract. This feature makes it an ideal carrier for oral administration in resisting this acidic environment and for release in the intestine. In this study, an engineered B. subtilis spore expressing the SARS-CoV-2 spike protein receptor binding domain (sRBD) on the spore surface was developed. In a pilot test, no adverse health event was observed in either mice or healthy human volunteers after three oral courses of B. subtilis spores. Significant increases in neutralizing antibody against sRBD, in both mice and human volunteers, after oral administration were also found. These findings may enable the further clinical developments of B. subtilis spores as an oral vaccine candidate against COVID-19 in the future.


2021 ◽  
Author(s):  
Marjorie Pizarro-Guajardo ◽  
Cesar Ortega-Lizarraga ◽  
Ana Inostroza-Mora ◽  
Francisca Cid-Rojas ◽  
Daniel Paredes-Sabja

Newly formed spores are essential for persistence of C. difficile in the host, transmission to a new susceptible host (Deakin et al., 2012b) and recurrence of CDI. BclA3 and BclA2 Spore surface proteins are expressed during sporulation under the control of mother-cell specific sigma factors of the RNA polymerase, SigE and SigK. Deletion of bclA3 leads to spores with an electron-dense exosporium layer that lacks bump-like structures in the electron-dense layer and hair-like projections, both structures typically found in the wild type spore. Therefore, in this work, we have addressed the role of the exosporium collagen-like BclA3 glycoprotein in the assembly of the exosporium layer. Immunogold labelling of BclA2CTD and BclA3CTD indicates that both proteins are located in the hairs, with BclA2 located outermost of BclA3. Absence of BclA3 leads to spores with no hair-like projections, and absence of bumps in thick exosporium spores, a phenotype also expressed in by the deletion of the collagen-like region of BclA3. Overall, these results provide insights into the role of BclA3 in the assembly of the exosporium layer of C. difficile spores.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pablo Castro-Córdova ◽  
Paola Mora-Uribe ◽  
Rodrigo Reyes-Ramírez ◽  
Glenda Cofré-Araneda ◽  
Josué Orozco-Aguilar ◽  
...  

AbstractClostridioides difficile spores produced during infection are important for the recurrence of the disease. Here, we show that C. difficile spores gain entry into the intestinal mucosa via pathways dependent on host fibronectin-α5β1 and vitronectin-αvβ1. The exosporium protein BclA3, on the spore surface, is required for both entry pathways. Deletion of the bclA3 gene in C. difficile, or pharmacological inhibition of endocytosis using nystatin, leads to reduced entry into the intestinal mucosa and reduced recurrence of the disease in a mouse model. Our findings indicate that C. difficile spore entry into the intestinal barrier can contribute to spore persistence and infection recurrence, and suggest potential avenues for new therapies.


2021 ◽  
Vol 9 (2) ◽  
pp. 285
Author(s):  
Daniela Krajčíková ◽  
Veronika Bugárová ◽  
Imrich Barák

Bacillus subtilis endospores are exceptionally resistant cells encircled by two protective layers: a petidoglycan layer, termed the cortex, and the spore coat, a proteinaceous layer. The formation of both structures depends upon the proper assembly of a basement coat layer, which is composed of two proteins, SpoIVA and SpoVM. The present work examines the interactions of SpoIVA and SpoVM with coat proteins recruited to the spore surface during the early stages of coat assembly. We showed that the alanine racemase YncD associates with two morphogenetic proteins, SpoIVA and CotE. Mutant spores lacking the yncD gene were less resistant against wet heat and germinated to a greater extent than wild-type spores in the presence of micromolar concentrations of l-alanine. In seeking a link between the coat and cortex formation, we investigated the interactions between SpoVM and SpoIVA and the proteins essential for cortex synthesis and found that SpoVM interacts with a penicillin-binding protein, SpoVD, and we also demonstrated that SpoVM is crucial for the proper localization of SpoVD. This study shows that direct contacts between coat morphogenetic proteins with a complex of cortex-synthesizing proteins could be one of the tools by which bacteria couple cortex and coat formation.


2021 ◽  
Vol 5 (6) ◽  
pp. 1727-1733
Author(s):  
Marianna Karava ◽  
Peter Gockel ◽  
Johannes Kabisch

We suggest spore display as a simple and cost efficient strategy for the production of immobilized photodecarboxylase utilized for the conversion of oils to biofuels.


2020 ◽  
Author(s):  
Armand Lablaine ◽  
Monica Serrano ◽  
Stéphanie Chamot ◽  
Isabelle Bornard ◽  
Frédéric Carlin ◽  
...  

The exosporium is the outermost spore layer of some Bacillus and Clostridium species and related organisms. It mediates interactions of spores with their environment, modulates spore adhesion and germination and could be implicated in pathogenesis. The exosporium is composed of a crystalline basal layer, formed mainly by the two cysteine-rich proteins CotY and ExsY, and surrounded by a glycoprotein hairy nap. The morphogenetic protein CotE is necessary for Bacillus cereus exosporium integrity, but how CotE directs exosporium assembly remains unknown. Here, we followed the localization of SNAP-tagged CotE, -CotY and -ExsY during B. cereus sporulation, using super-resolution fluorescence microscopy and evidenced interactions among these proteins. CotE, CotY and ExsY are present as complexes at all sporulation stages and follow a similar localization pattern during endospore formation that is reminiscent of the localization of Bacillus subtilis CotE. We show that B. cereus CotE drives the formation of one cap at both forespore poles by positioning CotY and then guides forespore encasement by ExsY, thereby promoting exosporium elongation. By these two actions, CotE ensures the formation of a complete exosporium. Importantly, we demonstrate that the assembly of the exosporium is not a unidirectional process as previously proposed but it is performed through the formation of two caps, as observed during B. subtilis coat morphogenesis. It appears that a general principle governs the assembly of the spore surface layers of Bacillaceae.


Author(s):  
Chi-Chuan Chen ◽  
Ho-Yih Liu ◽  
Cheng-Wei Chen ◽  
Harald Schneider ◽  
Jaakko Hyvönen

AbstractMicrosoroideae is the third largest of the six subfamilies of Polypodiaceae, containing over 180 species. These ferns are widely distributed in the tropical and subtropical regions of the Old World and Oceania. We documented the spore ornamentation and integrated these data into the latest phylogenetic hypotheses, including a sampling of 100 taxa representing each of 17 major lineages of microsoroid ferns. This enabled us to reconstruct the ancestral states of the spore morphology. The results show verrucate ornamentation as an ancestral state for Goniophlebieae and Lecanoptereae, globular for Microsoreae, and rugulate surface for Lepisoreae. In addition, spore ornamentation can be used to distinguish certain clades of the microsoroid ferns. Among all five tribes, Lecanoptereae show most diversity in spore surface ornamentation.


2020 ◽  
Vol 159 (4) ◽  
pp. 1431-1443.e6
Author(s):  
Milena M. Awad ◽  
Melanie L. Hutton ◽  
Adam J. Quek ◽  
William P. Klare ◽  
Steven J. Mileto ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6696
Author(s):  
Ana Raquel Maia ◽  
Rodrigo Reyes-Ramírez ◽  
Marjorie Pizarro-Guajardo ◽  
Anella Saggese ◽  
Ezio Ricca ◽  
...  

Clostridioides difficile is a Gram-positive, spore-forming bacterium that causes a severe intestinal infection. Spores of this pathogen enter in the human body through the oral route, interact with intestinal epithelial cells and persist in the gut. Once germinated, the vegetative cells colonize the intestine and produce toxins that enhance an immune response that perpetuate the disease. Therefore, spores are major players of the infection and ideal targets for new therapies. In this context, spore surface proteins of C. difficile, are potential antigens for the development of vaccines targeting C. difficile spores. Here, we report that the C-terminal domain of the spore surface protein BclA3, BclA3CTD, was identified as an antigenic epitope, over-produced in Escherichia coli and tested as an immunogen in mice. To increase antigen stability and efficiency, BclA3CTD was also exposed on the surface of B. subtilis spores, a mucosal vaccine delivery system. In the experimental conditions used in this study, free BclA3CTD induced antibody production in mice and attenuated some C. difficile infection symptoms after a challenge with the pathogen, while the spore-displayed antigen resulted less effective. Although dose regimen and immunization routes need to be optimized, our results suggest BclA3CTD as a potentially effective antigen to develop a new vaccination strategy targeting C. difficile spores.


Sign in / Sign up

Export Citation Format

Share Document