A 3-D Finite Element Formulation for the Determination of Unknown Boundary Conditions in Heat Conduction

Author(s):  
Brian H. Dennis ◽  
George S. Dulikravich
Author(s):  
Brian H. Dennis

A Least Squares Finite Element Method (LSFEM) formulation for the detection of unknown boundary conditions in steady heat conduction is presented. The method is capable of determining temperatures and heat fluxes in locations where such quantities are unknown provided such quantities are sufficiently overspecified in other locations. In several finite element and boundary element inverse implementations, the resulting system of equations becomes become rectangular if the number of overspecified conditions exceeds the number of unknown conditions. In the case of the finite element method, these rectangular matrices are sparse and can be difficult to solve efficiently. Often we must resort to the use of direct factorizations that require large amounts of core memory for realistic geometries. This difficulty has prevented the solution of large-scale inverse problems that require fine meshes to resolve complex 3-D geometries and material interfaces. In addition, the Galerkin finite element method (GFEM) does not provide the same level of accuracy for both temperature and heat flux. In this paper, an alternative finite element approach based on LSFEM will be shown. The LSFEM formulation always results in a symmetric positivedefinite matrix that can be readily treated with standard sparse matrix solvers. In this approach, the differential equation is cast in first-order form so equal order basis functions can be used for both temperature and heat flux. Enforcement of the overspecified boundary conditions is straightforward in the proposed formulation. The methods allows for direct treatment of complex geometries composed of heterogeneous materials.


2004 ◽  
Vol 126 (1) ◽  
pp. 110-118 ◽  
Author(s):  
Brian H. Dennis ◽  
George S. Dulikravich ◽  
Shinobu Yoshimura

A three-dimensional finite element method (FEM) formulation for the prediction of unknown boundary conditions in linear steady thermoelastic continuum problems is presented. The present FEM formulation is capable of determining displacements, surface stresses, temperatures, and heat fluxes on the boundaries where such quantities are unknown or inaccessible, provided such quantities are sufficiently over-specified on other boundaries. The method can also handle multiple material domains and multiply connected domains with ease. A regularized form of the method is also presented. The regularization is necessary for solving problems where the over-specified boundary data contain errors. Several regularization approaches are shown. The inverse FEM method described is an extension of a method previously developed by the leading authors for two-dimensional steady thermoelastic inverse problems and three-dimensional thermal inverse problems. The method is demonstrated for several three-dimensional test cases involving simple geometries although it is applicable to arbitrary three-dimensional configurations. Several different solution techniques for sparse rectangular systems are briefly discussed.


2005 ◽  
Vol 72 (5) ◽  
pp. 738-743 ◽  
Author(s):  
Yeau-Ren Jeng ◽  
Chung-Ming Tan

This paper develops a nonlinear finite element formulation to analyze nanoindentation using an atomistic approach, which is conducive to observing the deformation mechanisms associated with the nanoindentation cycle. The simulation results of the current modified finite element formulation indicate that the microscopic plastic deformations of the thin film are caused by instabilities of the crystalline structure, and that the commonly used procedure for estimating the contact area in nanoindentation testing is invalid when the indentation size falls in the nanometer regime.


2001 ◽  
Author(s):  
Cora Martínez ◽  
Raúl Goncalves

Abstract A new finite element formulation to analyze stresses and displacements in submarine pipelines during laying operations is presented in this paper. The method is based on the corotational formulation using Bernoulli non-linear beam elements to model the large displacements and rotations of the pipeline. The penalty method is used with spring-contact elements to accurately represent the actual boundary conditions. During the lay barge installation, the pipe rolls over the barge ramp and slides over the stinger before reaching the sea floor. The barge stinger is a ramp over floating supports that holds the pipeline in such a way that the pipe adopts an S-curve during the laying process. Since contact elements allow the pipeline to separate from the stinger at those points where the contact is lost, introducing these elements into the analysis makes it possible to accurately model the actual boundary conditions on the stinger. In addition, the use of contact elements allows the pipe to reach the sea floor at all those points, which naturally require this condition without imposing any displacement boundary condition during the convergence process. A real laying case of an oil transportation submarine pipeline is presented at the end of the paper to validate the results obtained with the developed formulation. A comparison with a finite element formulation introduced by the authors in a previous paper is also presented in order to verify the accuracy and computational effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document