unknown boundary conditions
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3397
Author(s):  
Franz von Bock und von Bock und Polach ◽  
Marco Klein ◽  
Moritz Hartmann

The interaction of waves and ice is of significant relevance for engineers, oceanographers and climate scientists. In-situ measurements are costly and bear uncertainties due to unknown boundary conditions. Therefore, physical laboratory experiments in ice tanks are an important alternative to validate theories or investigate particular effects of interest. Ice tanks use model ice which has down-scaled sea ice properties. This model ice in ice tanks holds disadvantages due to its low stiffness and non-linear behavior which is not in scale to sea ice, but is of particular relevance in wave-ice interactions. With decreasing stiffness steeper waves are required to reach critical stresses for ice breaking, while the non-linear, respectively non-elastic, deformation behavior is associated with high wave damping. Both are scale effects and do not allow the direct transfer of model scale test results to scenarios with sea ice. Therefore, the alternative modeling approach of Model Ice of Virtual Equivalent Thickness (MIVET) is introduced. Its performance is tested in physical experiments and compared to conventional model ice. The results show that the excessive damping of conventional model ice can be reduced successfully, while the scaling of the wave induced ice break-up still requires research and testing. In conclusion, the results obtained are considered a proof of concept of MIVET for wave-ice interaction problems.


2021 ◽  
Author(s):  
Arash Farzin

The effect of nonlinearity on behaviour of rectangular concrete tanks partially filled with water is studied. The nonlinearity in the numerical modeling of the surface liquid sloshing performance and hydrodynamic pressure initiates from unknown boundary conditions of contained liquid volume. The nonlinear simulations are performed for Time-History seismic analysis using the finite element software ABAQUS/CAE. The nonlinear results are compared with linear analytical solutions and ACI 350.3-06 code. A Paramedic study is conducted to investigate the effect of tank plan dimension, frequency content of different seismic ground motions, nature of earthquake movements, and interaction of bi-directional component of earthquake on the maximum sloshing height of liquid. The results reveal that the nonlinearity is more significant in shallow tanks. Moreover, nonlinear hydrodynamic pressure distribution has no important difference with linear calculated pressure except for the surface sloshing pressure acting on the top of tanks. The linear ratio of depth of liquid to tank plan dimension used in ACI 350.3-06 formulation is found to be less accurate for calculating the maximum sloshing height of liquid.


2021 ◽  
Author(s):  
Arash Farzin

The effect of nonlinearity on behaviour of rectangular concrete tanks partially filled with water is studied. The nonlinearity in the numerical modeling of the surface liquid sloshing performance and hydrodynamic pressure initiates from unknown boundary conditions of contained liquid volume. The nonlinear simulations are performed for Time-History seismic analysis using the finite element software ABAQUS/CAE. The nonlinear results are compared with linear analytical solutions and ACI 350.3-06 code. A Paramedic study is conducted to investigate the effect of tank plan dimension, frequency content of different seismic ground motions, nature of earthquake movements, and interaction of bi-directional component of earthquake on the maximum sloshing height of liquid. The results reveal that the nonlinearity is more significant in shallow tanks. Moreover, nonlinear hydrodynamic pressure distribution has no important difference with linear calculated pressure except for the surface sloshing pressure acting on the top of tanks. The linear ratio of depth of liquid to tank plan dimension used in ACI 350.3-06 formulation is found to be less accurate for calculating the maximum sloshing height of liquid.


2021 ◽  
Vol 11 (10) ◽  
pp. 4574
Author(s):  
Matúš Turis ◽  
Oľga Ivánková ◽  
Peter Burik ◽  
Milan Držík

An experimental optical method has been developed for the measurement of opening and sliding notch face movements. The light passing through a thin slit is monitored by a photodiode detector. Two parts of the slit are fixed independently on the notch faces of the simulated crack. Dynamic variations of the notch face movements are recorded as an electric signal by an ‘oscilloscope. The sensitivity of such displacement measurement is comparable with the wavelength of light. Dynamic mixed-mode stress intensity factors under shock loading were evaluated from the data obtained and subsequently compared with a numerical simulation by ANSYS software. As it was approved, the technique has shown sufficient sensitivity, good linearity, and measurement reliability. Due to its non-destructive nature and overall robustness, the arrangement is applicable even for structural component condition determination taking into consideration potentially unknown boundary conditions and the non-linear character of mechanical parameters.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wen-Yu He ◽  
Fan-Cheng Meng ◽  
Wei-Xin Ren

AbstractCable force estimation is essential for security assessment of cable-stayed bridges. Cable force estimation methods based on the relationship between cable force and frequency have been extensively studied and used during both construction phase and service phase. However, the effect induced by inclination angle of the cable is not included in the establishment of frequency-cable force relationship as horizontal cable model is normally employed. This study aims to investigate the influence of the inclination angle on vibration based cable force estimation and provide practical formulas accordingly. Firstly numerical examples of fixed-fixed and hinged-hinged cables are simulated to illustrate the necessity of considering the inclination angle effect on the modal parameters and cable force estimation for inclined cables with small sag. Then practical formulas considering the inclination angle effect to estimate the cable force of fixed-fixed and hinged-hinged cables via the fundamental frequency are established accordingly. For the inclined cables with unknown boundary conditions, the coefficients reflecting boundary condition are predicted via the practical formulas for fixed-fixed and hinged-hinged cables. And the cable force considering the influence of inclination angle and unknown boundary conditions is obtained by iteration method. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed method.


Filomat ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 79-104
Author(s):  
Javad Alavi ◽  
Hossein Aminikhah

In this paper, a modified orthogonal linear spline (OL-spline) is used for the numerical solution of a coupled nonlinear inverse reaction-diffusion problem to determine the unknown boundary conditions. The convergence properties of the new linear combination are obtained. A quasi-linearization technique is utilized to linearize the nonlinear term in the equations. This process produces a linear system of equations which can be solved easily. Using the new inequalities, error estimation and convergence of the proposed method are investigated. Two numerical examples are given to demonstrate the computational efficiency of the method and also the experimental convergence rate of examples are obtained.


Author(s):  
Yogesh Jaluria

Abstract A common occurrence in many practical systems is that the desired result is known or given, but the conditions needed for achieving this result are not known. This situation leads to inverse problems, which are of particular interest in thermal processes. For instance, the temperature cycle to which a component must be subjected in order to obtain desired characteristics in a manufacturing system, such as heat treatment or plastic thermoforming, is prescribed. However, the necessary boundary and initial conditions are not known and must be determined by solving the inverse problem. Similarly, an inverse solution may be needed to complete a given physical problem by determining the unknown boundary conditions. Solutions thus obtained are not unique and optimization is generally needed to obtain results within a small region of uncertainty. This review paper discusses several inverse problems that arise in a variety of practical processes and presents some of the approaches that may be used to solve them and obtain acceptable and realistic results. Optimization methods that may be used for reducing the error are presented. A few examples are given to illustrate the applicability of these methods and the challenges that must be addressed in solving inverse problems. These examples include the heat treatment process, unknown wall temperature distribution in a furnace, and transport in a plume or jet involving the determination of the strength and location of the heat source by employing a few selected data points downstream. Optimization of the positioning of the data points is used to minimize the number of samples needed for accurate predictions.


Sign in / Sign up

Export Citation Format

Share Document