Seismic response analysis of long-span bridges using nonlinear dynamic analysis techniques

Author(s):  
Roy A. Imbsen ◽  
Majid Sarraf
2011 ◽  
Vol 90-93 ◽  
pp. 1522-1525
Author(s):  
Ling Ling Yu

The current problems on damping in seismic response analysis of bridges is presented. The Rayleigh damping theory is simply introduced in this paper. Taking the Longtan River Bridge for instance, the finite element model of Longtan River Bridge (left line) is established. Then, the dynamic properties of the bridge is analyzed. Based on this, the Rayleigh damping constants and in an ANSYS dynamic analysis are obtained.


2013 ◽  
Vol 540 ◽  
pp. 141-152
Author(s):  
Hang Sun ◽  
De Jun Wang ◽  
Yong Li

Although the seismic response analysis under the multi-excitation was widely focused on the long-span flexible bridges, it is still necessary to pay more attention to this point of continuous girder bridges since the dynamic behavior of this type of bridges are different with either long-span bridges or simple support bridges. Based on the nonlinear dynamic time history analysis, a four-span continuous beam FEM was built, and the effect of excitation types and structure size on seismic response was studied. And results indicate that the structural performance of continuous girder bridges is sensitive with the space correlation of different location of seismic excitation. So its necessary to consider the space effect of excitation while carrying out a seismic design of continuous beam.


Author(s):  
B. Asgarian ◽  
M. A. Roshandel Tavana ◽  
R. H. Soltani

Offshore platforms in seismically active areas should be designed to survive severe earthquake excitations with no global structural failure. In seismic design of offshore platforms, it is often necessary to perform a dynamic analysis that accounts for nonlinear soil-pile-structures interaction effects. Nonlinear dynamic analysis for offshore structures has been a major challenge in marine structural and earthquake engineering. In this paper, nonlinear dynamic analysis of jacket type offshore platforms considering soil-pile-structure interaction subjected to strong ground motion have been studied. A jacket type offshore platform is included of piles, jacket and topside with different behaviors in seismic loading. Both jacket and pile elements have been modeled using fiber cross-sections. In this paper, free field ground motion analysis with respect to bedrock excitations has been done using nonlinear stress-strain relations for soil. This model has been developed using Open System for Earthquake Engineering Simulation (OpenSEES) software. In this paper, nonlinear seismic response analysis of an existing sample offshore platform in Persian Gulf subjected to strong ground motions in different bedrock depths has been performed and the results in terms of lateral deflections of platform, soil layers displacement-time history and acceleration response spectra of pile head, top of jacket and deck have been presented.


2012 ◽  
Vol 204-208 ◽  
pp. 2157-2161 ◽  
Author(s):  
Zhang Jun Liu ◽  
Yan Fu Xing ◽  
Yong Wan

Based on the orthogonal expansion method of stochastic processes, seismic acceleration processes can be represented as a linear combination of deterministic functions modulated by a set of mutually independent random variables. In conjunction with the probability density evolution method, the random seismic response of bridge structures can be successfully researched. A long-span bridge structure is taken as an example. The probabilistic information of the response of a long-span bridge structure in different control under earthquake excitations is investigated. The investigation provides a new approach to the random seismic response analysis of long-span bridge structures.


Sign in / Sign up

Export Citation Format

Share Document