Seismic response analysis of a double-deck long-span cable-stayed bridge under multi-support excitations

2013 ◽  
Vol 36 (3) ◽  
pp. 314-334 ◽  
Author(s):  
Changke Jiao ◽  
Aiqun Li ◽  
Xiaoping Wu ◽  
Xin Dong
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Jin Zhang ◽  
Ke-jian Chen ◽  
Neng-pan Ju ◽  
Shi-xiong Zheng ◽  
Hong-yu Jia ◽  
...  

To study the nonlinear seismic behavior and seismic resistance of the long-span cable-stayed bridges subjected to earthquakes, the multidimensional and multisupported artificial ground motions are synthesized first based on the in situ site conditions of the bridge considering the coherent and traveling wave effects. Then, considering the material nonlinearity of the cable-stayed bridge, a 3D finite element model is established based on the OpenSees platform, and the nonlinear seismic response analysis of the bridge is carried out under the synthetic artificial ground motions. The nonlinear seismic response of main bridge components such as piers, towers, bearings, and cables is analyzed, and key conclusions and observations are drawn.


2015 ◽  
Vol 744-746 ◽  
pp. 793-798
Author(s):  
Kai Yan Xu

The finite element method model of a 670.56m span cable-stayed bridge was established and the dynamic characteristic and nonlinear earthquake-responses of it under uniform and traveling-wave excitations were systematic studied. Results show that: 1) its former 10 rank frequency are located very dense which shows that more modes shape should be considered when dealing with the dynamic analysis. 2) The traveling-wave excitation has greater effect on long-span cable-stayed bridge, especially on the more flexible component and great attention should be paid to the design of such kind of bridge.


2014 ◽  
Vol 875-877 ◽  
pp. 998-1002
Author(s):  
Wei Bing Luo ◽  
Ji Ming Fan ◽  
Ji Lv ◽  
Li Ya Zhang ◽  
Cui Cui Wu

The seismic responses under the action of far-fault and near-fault ground motions of the bridge tower structure of the long-span cable-stayed bridge are numerically discussed by means of the model of the bottom consolidation of the column. The results show that the responses of tower of the cable-stayed bridge correlate well with the properties of the ground motions. The seismic responses of the model have much larger values under the near-fault velocity pulse-like ground motions than those of the counterpart. The frequency of system reduces as the flexibility of structure decreases because of the rigid foundation; The displace response of tower shows that the rigid foundation has little influence on the seismic response of the cable-stayed bridge, while the acceleration response of the tower implies that rigid foundation has adverse effect. Thus, consideration of the soil-pile-superstructure interaction can be meaningful both in theory and reality during the seismic design of long-span cable-stayed bridge structure.


2012 ◽  
Vol 204-208 ◽  
pp. 2157-2161 ◽  
Author(s):  
Zhang Jun Liu ◽  
Yan Fu Xing ◽  
Yong Wan

Based on the orthogonal expansion method of stochastic processes, seismic acceleration processes can be represented as a linear combination of deterministic functions modulated by a set of mutually independent random variables. In conjunction with the probability density evolution method, the random seismic response of bridge structures can be successfully researched. A long-span bridge structure is taken as an example. The probabilistic information of the response of a long-span bridge structure in different control under earthquake excitations is investigated. The investigation provides a new approach to the random seismic response analysis of long-span bridge structures.


2014 ◽  
Vol 501-504 ◽  
pp. 1364-1367
Author(s):  
Yong Zhe Niu ◽  
Wen Jie Guo ◽  
Guang Ling Li ◽  
Rui Xin Sun

Anti-seismic property was essential in the progress of bridge designing and construction due to destructive power of earthquake disaster and increasing span of bridge. This paper elaborated theory method of analysis, taking five spans continuous cable-stayed bridge which was half floating system as an engineering background, and using method of special finite element analysis to calculating dynamic characteristics and seismic response respectively which also considered longitudinal limit damping and stiffness of cable under longitudinal, transverse, vertical and three-dimensional seismic oscillation. Fundamental frequency of cable-stayed bridge was affected significantly with considering longitudinal limit damping, so connection measures would be determined reasonably in designing and analyzing anti-seismic property of long-span cable-stayed bridge. When response spectrum analysis was adopted, longitudinal and vertical displacement were larger than lateral displacement under longitudinal seismic oscillation, lateral seismic oscillation only affected the structural lateral displacement, and vertical seismic oscillation affected vertical and longitudinal displacement.


Sign in / Sign up

Export Citation Format

Share Document