scholarly journals THE SOPHISTICATION OF ELEMENT MODELING FOR SEISMIC RESPONSE ANALYSIS OF LONG SPAN BRIDGES BY USING A LARGE SCALE COMPUTING

Author(s):  
Hitoshi YATSUMOTO ◽  
Kazuya MAGOSHI ◽  
Hidesada KANAJI ◽  
Masaki NAKAMURA ◽  
Tetsuya NONAKA
2011 ◽  
Vol 90-93 ◽  
pp. 1522-1525
Author(s):  
Ling Ling Yu

The current problems on damping in seismic response analysis of bridges is presented. The Rayleigh damping theory is simply introduced in this paper. Taking the Longtan River Bridge for instance, the finite element model of Longtan River Bridge (left line) is established. Then, the dynamic properties of the bridge is analyzed. Based on this, the Rayleigh damping constants and in an ANSYS dynamic analysis are obtained.


2011 ◽  
Vol 94-96 ◽  
pp. 1941-1945
Author(s):  
Yi Wu ◽  
Chun Yang ◽  
Jian Cai ◽  
Jian Ming Pan

Elasto-plastic analysis of seismic responses of valve hall structures were carried out by using finite element software, and the effect of seismic waves on the seismic responses of the valve hall structures and suspension equipments were studied. Results show that significant torsional responses of the structure can be found under longitudinal and 3D earthquake actions. Under 3D earthquake actions, the seismic responses of the suspension valves are much more significant than those under 1D earthquake actions, the maximum tensile force of the suspenders is about twice of that under 1D action. The seismic responses of the suspension valves under vertical earthquake actions are much stronger than those under horizontal earthquake actions, when suffering strong earthquake actions; the maximum vertical acceleration of the suspension valves is about 4 times of that under horizontal earthquake actions. It is recommended that the effects of 3D earthquake actions on the structure should be considered in seismic response analysis of the valve hall structure.


2013 ◽  
Vol 540 ◽  
pp. 141-152
Author(s):  
Hang Sun ◽  
De Jun Wang ◽  
Yong Li

Although the seismic response analysis under the multi-excitation was widely focused on the long-span flexible bridges, it is still necessary to pay more attention to this point of continuous girder bridges since the dynamic behavior of this type of bridges are different with either long-span bridges or simple support bridges. Based on the nonlinear dynamic time history analysis, a four-span continuous beam FEM was built, and the effect of excitation types and structure size on seismic response was studied. And results indicate that the structural performance of continuous girder bridges is sensitive with the space correlation of different location of seismic excitation. So its necessary to consider the space effect of excitation while carrying out a seismic design of continuous beam.


2006 ◽  
Vol 28 (10) ◽  
pp. 1367-1377 ◽  
Author(s):  
Jun-Hong Ding ◽  
Xian-Long Jin ◽  
Yi-Zhi Guo ◽  
Gen-Guo Li

Sign in / Sign up

Export Citation Format

Share Document