orthogonal expansion
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Wenyu Jin

<p>It is desirable for people sharing a physical space to access different multimedia information streams simultaneously. For a good user experience, the interference of the different streams should be held to a minimum. This is straightforward for the video component but currently difficult for the audio sound component. Spatial multizone soundfield reproduction, which aims to provide an individual sound environment to each of a set of listeners without the use of physical isolation or headphones, has drawn significant attention of researchers in recent years. The realization of multizone soundfield reproduction is a conceptually challenging problem as currently most of the soundfield reproduction techniques concentrate on a single zone.  This thesis considers the theory and design of a multizone soundfield reproduction system using arrays of loudspeakers in given complex environments. We first introduce a novel method for spatial multizone soundfield reproduction based on describing the desired multizone soundfield as an orthogonal expansion of formulated basis functions over the desired reproduction region. This provides the theoretical basis of both 2-D (height invariant) and 3-D soundfield reproduction for this work. We then extend the reproduction of the multizone soundfield over the desired region to reverberant environments, which is based on the identification of the acoustic transfer function (ATF) from the loudspeaker over the desired reproduction region using sparse methods. The simulation results confirm that the method leads to a significantly reduced number of required microphones for an accurate multizone sound reproduction compared with the state of the art, while it also facilitates the reproduction over a wide frequency range.  In addition, we focus on the improvements of the proposed multizone reproduction system with regard to practical implementation. The so-called 2.5D multizone oundfield reproduction is considered to accurately reproduce the desired multizone soundfield over a selected 2-D plane at the height approximately level with the listener’s ears using a single array of loudspeakers with 3-D reverberant settings. Then, we propose an adaptive reverberation cancelation method for the multizone soundfield reproduction within the desired region and simplify the prior soundfield measurement process. Simulation results suggest that the proposed method provides a faster convergence rate than the comparative approaches under the same hardware provision. Finally, we conduct the real-world implementation based on the proposed theoretical work. The experimental results show that we can achieve a very noticeable acoustic energy contrast between the signals recorded in the bright zone and the quiet zone, especially for the system implementation with reverberation equalization.</p>


2021 ◽  
Author(s):  
◽  
Wenyu Jin

<p>It is desirable for people sharing a physical space to access different multimedia information streams simultaneously. For a good user experience, the interference of the different streams should be held to a minimum. This is straightforward for the video component but currently difficult for the audio sound component. Spatial multizone soundfield reproduction, which aims to provide an individual sound environment to each of a set of listeners without the use of physical isolation or headphones, has drawn significant attention of researchers in recent years. The realization of multizone soundfield reproduction is a conceptually challenging problem as currently most of the soundfield reproduction techniques concentrate on a single zone.  This thesis considers the theory and design of a multizone soundfield reproduction system using arrays of loudspeakers in given complex environments. We first introduce a novel method for spatial multizone soundfield reproduction based on describing the desired multizone soundfield as an orthogonal expansion of formulated basis functions over the desired reproduction region. This provides the theoretical basis of both 2-D (height invariant) and 3-D soundfield reproduction for this work. We then extend the reproduction of the multizone soundfield over the desired region to reverberant environments, which is based on the identification of the acoustic transfer function (ATF) from the loudspeaker over the desired reproduction region using sparse methods. The simulation results confirm that the method leads to a significantly reduced number of required microphones for an accurate multizone sound reproduction compared with the state of the art, while it also facilitates the reproduction over a wide frequency range.  In addition, we focus on the improvements of the proposed multizone reproduction system with regard to practical implementation. The so-called 2.5D multizone oundfield reproduction is considered to accurately reproduce the desired multizone soundfield over a selected 2-D plane at the height approximately level with the listener’s ears using a single array of loudspeakers with 3-D reverberant settings. Then, we propose an adaptive reverberation cancelation method for the multizone soundfield reproduction within the desired region and simplify the prior soundfield measurement process. Simulation results suggest that the proposed method provides a faster convergence rate than the comparative approaches under the same hardware provision. Finally, we conduct the real-world implementation based on the proposed theoretical work. The experimental results show that we can achieve a very noticeable acoustic energy contrast between the signals recorded in the bright zone and the quiet zone, especially for the system implementation with reverberation equalization.</p>


2021 ◽  
Vol 18 ◽  
pp. 160-168
Author(s):  
Aygun Garayeva ◽  
Fatima Guliyeva

We consider a third-order ordinary differential operator with summable coefficients. The absolute and uniform convergence of the orthogonal expansion of a function from the class in the eigenfunctionsof this operator is studied and the rate of uniform convergence of these expansions on is estimated


2021 ◽  
Vol 11 (16) ◽  
pp. 7433
Author(s):  
Andrzej Dziech

In the paper, orthogonal transforms based on proposed symmetric, orthogonal matrices are created. These transforms can be considered as generalized Walsh–Hadamard Transforms. The simplicity of calculating the forward and inverse transforms is one of the important features of the presented approach. The conditions for creating symmetric, orthogonal matrices are defined. It is shown that for the selection of the elements of an orthogonal matrix that meets the given conditions, it is necessary to select only a limited number of elements. The general form of the orthogonal, symmetric matrix having an exponential form is also presented. Orthogonal basis functions based on the created matrices can be used for orthogonal expansion leading to signal approximation. An exponential form of orthogonal, sparse matrices with variable parameters is also created. Various versions of orthogonal transforms related to the created full and sparse matrices are proposed. Fast computation of the presented transforms in comparison to fast algorithms of selected orthogonal transforms is discussed. Possible applications for signal approximation and examples of image spectrum in the considered transform domains are presented.


2020 ◽  
Vol 35 (6) ◽  
pp. 341-353
Author(s):  
Gennady A. Mikhailov ◽  
Natalya V. Tracheva ◽  
Sergey A. Ukhinov

AbstractIn the present paper, we propose a new combined kernel-projective statistical estimator of the two-dimensional distribution density, where the first ‘main’ variable is processed with the kernel estimator, and the second one is processed with the projective estimator for the conditional distribution density. In this case, statistically estimated coefficients of some orthogonal expansion of the conditional distribution density are used for each ‘kernel’ interval defined by a micro-sample. The root-mean-square optimization of such an estimator is performed under the assumptions concerning the convergence rate of the used orthogonal expansion. The numerical study of the constructed estimator is implemented for angular distributions of the radiation flux forward-scattered and backscattered by a layer of matter. A comparative analysis of the results is performed for molecular and aerosol scattering.


2020 ◽  
Vol 48 (4) ◽  
pp. 941-962
Author(s):  
Mohammed Al Mugahwi ◽  
Omar De la Cruz Cabrera ◽  
Lothar Reichel

Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 420 ◽  
Author(s):  
Mahjabeen Javed ◽  
Seelay Tasmim ◽  
Mustafa K. Abdelrahman ◽  
Cedric P. Ambulo ◽  
Taylor H. Ware

Stimuli-responsive materials that exhibit a mechanical response to specific biological conditions are of considerable interest for responsive, implantable medical devices. Herein, we report the synthesis, processing and characterization of oxidation-responsive liquid crystal elastomers that demonstrate programmable shape changes in response to reactive oxygen species. Direct ink writing (DIW) is used to fabricate Liquid Crystal Elastomers (LCEs) with programmed molecular orientation and anisotropic mechanical properties. LCE structures were immersed in different media (oxidative, basic and saline) at body temperature to measure in vitro degradation. Oxidation-sensitive hydrophobic thioether linkages transition to hydrophilic sulfoxide and sulfone groups. The introduction of these polar moieties brings about anisotropic swelling of the polymer network in an aqueous environment, inducing complex shape changes. 3D-printed uniaxial strips exhibit 8% contraction along the nematic director and 16% orthogonal expansion in oxidative media, while printed LCEs azimuthally deform into cones 19 times their original thickness. Ultimately, these LCEs degrade completely. In contrast, LCEs subjected to basic and saline solutions showed no apparent response. These oxidation-responsive LCEs with programmable shape changes may enable a wide range of applications in target specific drug delivery systems and other diagnostic and therapeutic tools.


2020 ◽  
Vol 10 (4) ◽  
pp. 1306
Author(s):  
Chang-Wei Huang

Deep heating procedures are helpful in treating joint contractures that frequently occur with fractures and joint diseases involving surgical implants and artificial joint prostheses. This study uses a one-dimensional composite medium model consisting of parallel slabs as a simplified approach to shed light on the influences of implants during ultrasound diathermy. Analytical solutions for the one-dimensional transient heat generation and conduction problem were derived using the orthogonal expansion technique and a Green’s function approach. The analytical solutions provided deep insight into the temperature profile by therapeutic ultrasound heating in the composite system. The effects of the implant material type, tissue thickness, and ultrasound operation frequency on temperature distribution were studied for clinical application. In addition, sensitivity analyses were carried out to investigate the influences of material properties on the temperature distribution during ultrasound diathermy. Based on the derived analytical solutions, the numerical simulations indicate that materials with high density, high specific heat, and low thermal conductivity may be optimal implant materials. Among available implant materials, a tantalum implant, which can achieve a lower temperature rise within the tissue (hydrogel) and bone layers during ultrasound diathermy, is a better choice thanks to its thermodynamics.


Author(s):  
О.Б. Арушанян ◽  
С.Ф. Залеткин

Доказана теорема о разрешимости нелинейной системы уравнений относительно приближенных значений коэффициентов Чебышёва старшей производной, входящей в дифференциальное уравнение. Теорема является теоретическим обоснованием ранее предложенного приближенного метода интегрирования канонических систем обыкновенных дифференциальных уравнений второго порядка на основе ортогональных разложений с использованием многочленов Чебышёва первого рода. A solvability theorem is proved for a nonlinear system of equations with respect to the approximate Chebyshev coefficients of the highest derivative in an ordinary differential equation. This theorem is a theoretical substantiation for the previously proposed approximate method of solving canonical systems of second-order ordinary differential equations using orthogonal expansions on the basis of Chebyshev polynomials of the first kind.


Sign in / Sign up

Export Citation Format

Share Document