Initial Risk Analysis of Potential Failure Modes

Author(s):  
B. Carlsson
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1741
Author(s):  
Joanna Fabis-Domagala ◽  
Mariusz Domagala ◽  
Hassan Momeni

Hydraulic systems are widely used in the aeronautic, machinery, and energy industries. The functions that these systems perform require high reliability, which can be achieved by examining the causes of possible defects and failures and by taking appropriate preventative measures. One of the most popular methods used to achieve this goal is FMEA (Failure Modes and Effects Analysis), the foundations of which were developed and implemented in the early 1950s. It was systematized in the following years and practically implemented. It has also been standardized and implemented as one of the methods of the International Organization for Standardization (ISO) 9000 series standards on quality assurance and management. Apart from wide application, FMEA has a number of weaknesses, which undoubtedly include risk analysis based on the RPN (Risk Priority Number), which is evaluated as a product of severity, occurrence, and detection. In recent years, the risk analysis has been very often replaced by fuzzy logic. This study proposes the use of matrix analysis and statistical methods for performing simplified RCA (Root Cause Analysis) and for classification potential failures for a variable delivery vane pump. The presented methodology is an extension of matrix FMEA and allows for prioritizing potential failures and their causes in relation to functions performed by pump components, the end effects, and the defined symptoms of failure of the vane pump.


2020 ◽  
Vol 4 (3-4) ◽  
pp. 119-125
Author(s):  
Marie Palamini ◽  
Geneviève Mercier ◽  
Jean-François Bussières

AbstractBackgroundIn the hospital setting, trace contamination with hazardous medications comes primarily from the manipulation of containers used in preparing and administering drugs. However, some traces of medications also come from the excreta of patients.MethodsThis descriptive exploratory study involved direct observation and discussion. The aim was to map potential contamination associated with handling babies’ excreta through diaper management. The study was conducted at CHU Sainte Justine (Montréal, Québec, Canada), a 500-bed mother and child facility with 38 beds for hematology-oncology and bone marrow transplant. A list of key steps related to the management of diapers by a parent or caregiver on a pediatric unit was established by the investigators. A data collection grid was then developed and reviewed by a member of the research team.ResultsA total of six diaper changes, by six distinct individuals, were observed in August and September 2019. Transport of a soiled diaper for weighing outside the baby’s room by an additional caregiver was also observed and recorded. In total, 25 individual steps in diaper management and 28 potential failure modes were identified through mapping.ConclusionsChanging a baby’s diaper involves many individual steps, which are subject to numerous failure modes that can contribute to contamination with traces of hazardous drugs. A good understanding of these process steps and failure modes is desirable to better train caregivers and parents to reduce trace contamination with hazardous drugs.


2010 ◽  
Vol 146-147 ◽  
pp. 757-769
Author(s):  
Ching Ming Cheng ◽  
Wen Fang Wu ◽  
Yao Hsu

The Design Failure Modes and Effects Analysis (DFMEA) are generally applied to risk management of New Product Development (NPD) through standardization of potential failure modes and effect-ranking of rating criterion with failure modes. Typical 1 to 10 of effect-ranking are widely weighed the priority of classification, that framing effects and status quo senses might cause decision trap happening thus. The FMEA follows considerable indexes which are including Severity, Occurrence and Detection, and need be associated with difference between every two failures individually. However, we suspect that a more systematic construction of the analysis by which failure modes belong is necessary in order to make intellectual progress in this area. Two ways of such differentiation and construction are improvable effect-ranking and systematized indexes; here we resolve for attributes of failures with classification, maturity and experiance of indexes according to an existing rule. In Severity model, the larger differentiation is achieved by separating indexes to the classification of the Law & Regulation, Function and Cosmetic. Occurrence model has its characteristic a reliable ranking indexwhich assists decisionmakers to manage their venture. This is the model most closely associate with product maturity by grouping indexes to the new, extend and series product. Detection model offers a special perspective on cost; here the connections concerned with phase occasion of the review, verification and validation. Such differentiations will be proposed and mapped with the Life Cycle Profile (LCP) to systematize FMEA. Meanwhile, a more reasonable Risk Priority Number (RPN) with the new weighting rule will be worked out for effect-ranking and management system will be integrated systematiclly


2022 ◽  
Vol 153 ◽  
pp. 107116
Author(s):  
Chunyu Wu ◽  
Dechun Lu ◽  
M. Hesham El Naggar ◽  
Chao Ma ◽  
Qiang Li ◽  
...  

Author(s):  
Jahau Lewis Chen ◽  
Chuan Hung

AbstractThis paper presents an eco-innovation method by revised the “Anticipatory Failure Determination (AFD)” method which is the failure analysis tools in TRIZ theory. Using the functional analysis to list the system process and make the functional analysis model. Based on the environmental efficiency factors and functional analysis model, Substance-Field inverse analysis can find a lot of failure modes in the system. In order to assess the priority of risk improvement, the designer can calculate the environmental risk priority number including controlling documents, public image and environmental consequences. Designer can quickly find out the potential failure mode in the complex engineering system with the systematic steps. The TRIZ methods are used for finding eco-innovation idea to solve failure problem. The capability of the whole eco-innovative design process was illustrated by the electrical motorcycle case.


2018 ◽  
Vol 210 ◽  
pp. 04008
Author(s):  
Marta Woch ◽  
Justyna Tomaszewska ◽  
Jarosław Wójcik ◽  
Mariusz Zieja

In the time of globalization and the continuous travelling of people between different parts of the world, air transportation is becoming one of the most important modes of transport. Nevertheless, it is crucial to continuously improve the level of safety and reduce the absolute number of accidents and their victims. The risk analysis with the usage of IT system TURAWA, which was developed to collect the aircraft’s accidents informations, has been discussed in the presented article. Calculation of risk is based on the data sample collected in the operation process. The implementation of the risk of potential failure event in TURAWA is presented and compared with the prediction of such situation by the decision trees. It has been concluded that models should be developed, which cause in the elimination of the human factor from the decision making chain.


Sign in / Sign up

Export Citation Format

Share Document