Parallelization of a direct simulation monte-carlo code for workstation cluster

Author(s):  
D. Hafermann ◽  
M. Kuntz ◽  
W. Rönsch
2011 ◽  
Vol 110-116 ◽  
pp. 2491-2496
Author(s):  
Sourabh Jain ◽  
Prabhu Ramachandran

Rarefied flows cannot be accurately simulated using Navier-Stokes (N-S) equations. The Direct Simulation Monte-Carlo (DSMC) technique is a particle based method for accurate simulation of flows under such conditions. A DSMC code is developed using an object-oriented (OO) approach which can simulate flows around arbitrary shapes. Hence, the flux from such boundaries can be correctly predicted. The object-oriented approach enables for easy modification of the code. For example, it is easy to use different collision models to implement different relaxation algorithm. The code is validated for the one-dimensional Fourier heat conduction problem. Results for the development of a shock due to supersonic flow over a 15 degree wedge are also presented. Inclined boundary of the wedge is correctly captured as the particles interact with the the exact shape of the boundary. Shock angle is found more than expected due to rarefaction effects.


2015 ◽  
Vol 18 (4) ◽  
pp. 1095-1121 ◽  
Author(s):  
Ming-Chung Lo ◽  
Cheng-Chin Su ◽  
Jong-Shinn Wu ◽  
Kun-Chang Tseng

AbstractThis paper presents the implementation, validation and application of TCE (total collision energy) model for simulating hypersonic reactive flows in a parallel direct simulation Monte Carlo code, named PDSC++, using an unstructured grid. A series of benchmarking test cases, which include reproduction of theoretical rate constants in a single cell, 2D hypersonic flow past a cylinder and 2D-axisymmetric hypersonic flow past a sphere, were performed to validate the implementation. Finally, detailed aerothermodynamics of the flown reentry Apollo 6 Command Module at 105 km is simulated to demonstrate the powerful capability of the PDSC++in treating realistic hypersonic reactive flow at high altitude.


Author(s):  
Sauro Succi

This chapter provides a bird’s eye view of the main numerical particle methods used in the kinetic theory of fluids, the main purpose being of locating Lattice Boltzmann in the broader context of computational kinetic theory. The leading numerical methods for dense and rarified fluids are Molecular Dynamics (MD) and Direct Simulation Monte Carlo (DSMC), respectively. These methods date of the mid 50s and 60s, respectively, and, ever since, they have undergone a series of impressive developments and refinements which have turned them in major tools of investigation, discovery and design. However, they are both very demanding on computational grounds, which motivates a ceaseless demand for new and improved variants aimed at enhancing their computational efficiency without losing physical fidelity and vice versa, enhance their physical fidelity without compromising computational viability.


Sign in / Sign up

Export Citation Format

Share Document