Hydrodynamical simulations of the universe

Author(s):  
F.R. Pearce ◽  
H.M.P. Couchman ◽  
P.A. Thomas ◽  
A.R. Jenkins ◽  
C.S. Frenk ◽  
...  
2018 ◽  
Vol 620 ◽  
pp. A173 ◽  
Author(s):  
E. Cucchetti ◽  
E. Pointecouteau ◽  
P. Peille ◽  
N. Clerc ◽  
E. Rasia ◽  
...  

Answers to the metal production of the Universe can be found in galaxy clusters, notably within their intra-cluster medium (ICM). The X-ray Integral Field Unit (X-IFU) on board the next-generation European X-ray observatory Athena (2030s) will provide the necessary leap forward in spatially-resolved spectroscopy required to disentangle the intricate mechanisms responsible for this chemical enrichment. In this paper, we investigate the future capabilities of the X-IFU in probing the hot gas within galaxy clusters. From a test sample of four clusters extracted from cosmological hydrodynamical simulations, we present comprehensive synthetic observations of these clusters at different redshifts (up to z ≤ 2) and within the scaled radius R500 performed using the instrument simulator SIXTE. Through 100 ks exposures, we demonstrate that the X-IFU will provide spatially resolved mapping of the ICM physical properties with little to no biases (⪅5%) and well within statistical uncertainties. The detailed study of abundance profiles and abundance ratios within R500 also highlights the power of the X-IFU in providing constraints on the various enrichment models. From synthetic observations out to z = 2, we have also quantified its ability to track the chemical elements across cosmic time with excellent accuracy, and thereby to investigate the evolution of metal production mechanisms as well as the link to the stellar initial mass-function. Our study demonstrates the unprecedented capabilities of the X-IFU of unveiling the properties of the ICM but also stresses the data analysis challenges faced by future high-resolution X-ray missions such as Athena.


2017 ◽  
Vol 12 (S333) ◽  
pp. 216-221
Author(s):  
Hamsa Padmanabhan

AbstractThe evolution of neutral hydrogen (HI) across redshifts is a powerful probe of cosmology, large scale structure in the universe and the intergalactic medium. Using a data-driven halo model to describe the distribution of HI in the post-reionization universe (z ∼ 5 to 0), we obtain the best-fitting parameters from a rich sample of observational data: low redshift 21-cm emission line studies, intermediate redshift intensity mapping experiments, and higher redshift Damped Lyman Alpha (DLA) observations. Our model describes the abundance and clustering of neutral hydrogen across redshifts 0 - 5, and is useful for investigating different aspects of galaxy evolution and for comparison with hydrodynamical simulations. The framework can be applied for forecasting future observations with neutral hydrogen, and extended to the case of intensity mapping with molecular and other line transitions at intermediate redshifts.


2007 ◽  
Vol 3 (S244) ◽  
pp. 279-283
Author(s):  
M. Hoeft ◽  
G. Yepes ◽  
S. Gottlöber

AbstractThe cosmic ultraviolet background (UVB) heats the intergalactic medium (IGM), as a result the gas in dark matter halos below a certain mass is too hot to cool within a Hubble time. The UVB effectively suppresses the formation of dwarf galaxies. Using high resolution cosmological hydrodynamical simulations we show that photo heating leads to small baryon fractions in halos below ~ 6× 109h−1M⊙, independent of the cosmic environment. The simulations are carried out assuming a homogeneous UVB with flux densities as given by Haardt, &, Madau (1996). A halo may stop to condense gas significantly after the universe is reionised, namely when its mass falls below the characteristic mass scale set by the photo heating. Assuming a spherical halo model we derive this characteristic mass analytically and identify the main mechanisms that prevent the gas from cooling in small halos. The theoretically derived characteristic mass is smaller than the one obtained from observations. Increasing the energy per ionising photon by a factor between four and eight would be sufficient to reconcile both. This is equivalent to an average temperature of the IGM of ~ 104K. In this sense the faint end of the luminosity function may serve as a calorimeter for the IGM.


2020 ◽  
Vol 495 (4) ◽  
pp. 4800-4819 ◽  
Author(s):  
Giovanni Aricò ◽  
Raul E Angulo ◽  
Carlos Hernández-Monteagudo ◽  
Sergio Contreras ◽  
Matteo Zennaro ◽  
...  

ABSTRACT We present and test a framework that models the 3D distribution of mass in the universe as a function of cosmological and astrophysical parameters. Our approach combines two different techniques: a rescaling algorithm that modifies the cosmology of gravity-only N-body simulations, and a ‘baryonification’ algorithm that mimics the effects of astrophysical processes induced by baryons, such as star formation and active galactic nuclei (AGN) feedback. We show how this approach can accurately reproduce the effects of baryons on the matter power spectrum of various state-of-the-art hydrodynamical simulations (EAGLE, Illustris, Illustris-TNG, Horizon-AGN, and OWLS, Cosmo-OWLS and BAHAMAS), to better than 1 per cent from very large down to small, highly non-linear, scales ($k\sim 5 \, h\, {\rm Mpc}^{-1}$), and from z = 0 up to z ∼ 2. We highlight that, because of the heavy optimization of our algorithms, we can obtain these predictions for arbitrary baryonic models and cosmology (including massive neutrinos and dynamical dark energy models) with an almost negligible CPU cost. With these tools in hand, we explore the degeneracies between cosmological and astrophysical parameters in the non-linear mass power spectrum. Our findings suggest that after marginalizing over baryonic physics, cosmological constraints inferred from weak gravitational lensing should be moderately degraded.


2020 ◽  
Vol 499 (3) ◽  
pp. 4239-4260
Author(s):  
Sydney Sherman ◽  
Shardha Jogee ◽  
Jonathan Florez ◽  
Matthew L Stevans ◽  
Lalitwadee Kawinwanichakij ◽  
...  

ABSTRACT We explore the build-up of quiescent galaxies using a sample of 28 469 massive (M⋆ ≥ 1011 M⊙) galaxies at redshifts 1.5 < $z$ < 3.0, drawn from a 17.5 deg2 area (0.33 Gpc3 comoving volume at these redshifts). This allows for a robust study of the quiescent fraction as a function of mass at 1.5 < $z$ < 3.0 with a sample ∼40 times larger at log(M⋆/$\rm M_{\odot })\ge 11.5$ than previous studies. We derive the quiescent fraction using three methods: specific star formation rate, distance from the main sequence, and UVJ colour–colour selection. All three methods give similar values at 1.5 < $z$ < 2.0, however the results differ by up to a factor of 2 at 2.0 < $z$ < 3.0. At redshifts 1.5 < $z$ < 3.0, the quiescent fraction increases as a function of stellar mass. By $z$ = 2, only 3.3 Gyr after the big bang, the universe has quenched ∼25 per cent of M⋆ = 1011 M⊙ galaxies and ∼45 per cent of M⋆ = 1012 M⊙ galaxies. We discuss physical mechanisms across a range of epochs and environments that could explain our results. We compare our results with predictions from hydrodynamical simulations SIMBA and IllustrisTNG and semi-analytic models (SAMs) SAG, SAGE, and Galacticus. The quiescent fraction from IllustrisTNG is higher than our empirical result by a factor of 2–5, while those from SIMBA and the three SAMs are lower by a factor of 1.5–10 at 1.5 < $z$ < 3.0.


Author(s):  
Krzysztof Bolejko ◽  
Andrzej Krasinski ◽  
Charles Hellaby ◽  
Marie-Noelle Celerier
Keyword(s):  

2009 ◽  
Author(s):  
Ernst Heinrich Philipp August Haeckel ◽  
Joseph McCabe

Sign in / Sign up

Export Citation Format

Share Document