The effect of filler particles on the texture of food gels

2015 ◽  
pp. 183-200 ◽  
Author(s):  
M.J. Dille ◽  
K.I. Draget ◽  
M.N. Hattrem
Keyword(s):  
2021 ◽  
Vol 11 (10) ◽  
pp. 4470
Author(s):  
Inna A. Belyaeva ◽  
Jürgen Klepp ◽  
Hartmut Lemmel ◽  
Mikhail Shamonin

Ultra-small-angle neutron scattering (USANS) experiments are reported on isotropic magnetoactive elastomer (MAE) samples with different concentrations of micrometer-sized iron particles in the presence of an in-plane magnetic field up to 350 mT. The effect of the magnetic field on the scattering curves is observed in the scattering vector range between 2.5 × 10−5 and 1.85 × 10−4 Å−1. It is found that the neutron scattering depends on the magnetization history (hysteresis). The relation of the observed changes to the magnetic-field-induced restructuring of the filler particles is discussed. The perspectives of employing USANS for investigations of the internal microstructure and its changes in magnetic field are considered.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2138
Author(s):  
Anna K. Zykova ◽  
Petr V. Pantyukhov ◽  
Elena E. Mastalygina ◽  
Christian Chaverri-Ramos ◽  
Svetlana G. Nikolaeva ◽  
...  

The purpose of this study was to assess the potential for biocomposite films to biodegrade in diverse climatic environments. Biocomposite films based on polyethylene and 30 wt.% of two lignocellulosic fillers (wood flour or flax straw) of different size fractions were prepared and studied. The developed composite films were characterized by satisfactory mechanical properties that allows the use of these materials for various applications. The biodegradability was evaluated in soil across three environments: laboratory conditions, an open field in Russia, and an open field in Costa Rica. All the samples lost weight and tensile strength during biodegradation tests, which was associated with the physicochemical degradation of both the natural filler and the polymer matrix. The spectral density of the band at 1463 cm−1 related to CH2-groups in polyethylene chains decreased in the process of soil burial, which is evidence of polymer chain breakage with formation of CH3 end groups. The degradation rate of most biocomposites after 20 months of the soil assays was greatest in Costa Rica (20.8–30.9%), followed by laboratory conditions (16.0–23.3%), and lowest in Russia (13.2–22.0%). The biocomposites with flax straw were more prone to biodegradation than those with wood flour, which can be explained by the chemical composition of fillers and the shape of filler particles. As the size fraction of filler particles increased, the biodegradation rate increased. Large particles had higher bioavailability than small spherical ones, encapsulated by a polymer. The prepared biocomposites have potential as an ecofriendly replacement for traditional polyolefins, especially in warmer climates.


2008 ◽  
Vol 50 (5) ◽  
pp. 600-606 ◽  
Author(s):  
A. L. Svistkov ◽  
Lyudmila Andreevna Komar ◽  
G. Heinrich ◽  
B. Lauke

Polymer ◽  
2010 ◽  
Vol 51 (9) ◽  
pp. 1954-1963 ◽  
Author(s):  
Klaus Werner Stöckelhuber ◽  
Amit Das ◽  
René Jurk ◽  
Gert Heinrich

1998 ◽  
Vol 31 (16) ◽  
pp. 5290-5299 ◽  
Author(s):  
Jianrong Feng ◽  
Ewa Odrobina ◽  
Mitchell A. Winnik

Polymer ◽  
1998 ◽  
Vol 39 (25) ◽  
pp. 6369-6376 ◽  
Author(s):  
V. Arrighi ◽  
J.S. Higgins ◽  
A.N. Burgess ◽  
G. Floudas

1999 ◽  
Vol 2 (3) ◽  
pp. 263-269 ◽  
Author(s):  
F.G Shi ◽  
Mikrajuddin Abdullah ◽  
S Chungpaiboonpatana ◽  
K Okuyama ◽  
C Davidson ◽  
...  

2021 ◽  
Author(s):  
Sankalp Gour ◽  
Deepu Kumar Singh ◽  
Deepak Kumar ◽  
Vinod Yadav

Abstract The present study deals with the constitutive modeling for the mechanical behavior of rubber with filler particles. An analytical model is developed to predict the mechanical properties of rubber with added filler particles based on experimental observation. To develop the same, a continuum mechanics-based hyperelasticity theory is utilized. The model is validated with the experimental results of the chloroprene and nitrile butadiene rubbers filled with different volume fractions of carbon black and carbon nanoparticles, respectively. The findings of the model agree well with the experimental results. In general, the developed model will be helpful to the materialist community working in characterizing the material behavior of tires and other rubber-like materials.


Sign in / Sign up

Export Citation Format

Share Document