Textiles with integrated sleep-monitoring sensors

Author(s):  
Anne Schwarz-Pfeiffer ◽  
Melanie Hoerr ◽  
Viktorija Mecnika
Keyword(s):  
2021 ◽  
Vol 183 ◽  
pp. 696-705
Author(s):  
Qiang Pan ◽  
Damien Brulin ◽  
Eric Campo

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
L. J. Delaney ◽  
E. Litton ◽  
K. L. Melehan ◽  
H.-C. C. Huang ◽  
V. Lopez ◽  
...  

Abstract Background Sleep amongst intensive care patients is reduced and highly fragmented which may adversely impact on recovery. The current challenge for Intensive Care clinicians is identifying feasible and accurate assessments of sleep that can be widely implemented. The objective of this study was to investigate the feasibility and reliability of a minimally invasive sleep monitoring technique compared to the gold standard, polysomnography, for sleep monitoring. Methods Prospective observational study employing a within subject design in adult patients admitted to an Intensive Care Unit. Sleep monitoring was undertaken amongst minimally sedated patients via concurrent polysomnography and actigraphy monitoring over a 24-h duration to assess agreement between the two methods; total sleep time and wake time. Results We recruited 80 patients who were mechanically ventilated (24%) and non-ventilated (76%) within the intensive care unit. Sleep was found to be highly fragmented, composed of numerous sleep bouts and characterized by abnormal sleep architecture. Actigraphy was found to have a moderate level of overall agreement in identifying sleep and wake states with polysomnography (69.4%; K = 0.386, p < 0.05) in an epoch by epoch analysis, with a moderate level of sensitivity (65.5%) and specificity (76.1%). Monitoring accuracy via actigraphy was improved amongst non-ventilated patients (specificity 83.7%; sensitivity 56.7%). Actigraphy was found to have a moderate correlation with polysomnography reported total sleep time (r = 0.359, p < 0.05) and wakefulness (r = 0.371, p < 0.05). Bland–Altman plots indicated that sleep was underestimated by actigraphy, with wakeful states overestimated. Conclusions Actigraphy was easy and safe to use, provided moderate level of agreement with polysomnography in distinguishing between sleep and wakeful states, and may be a reasonable alternative to measure sleep in intensive care patients. Clinical Trial Registration number ACTRN12615000945527 (Registered 9/9/2015).


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Xu Jiao ◽  
Xiaosha Wang ◽  
Xiaohang Wang ◽  
Zipeng Liu

Author(s):  
Zhijing Wei ◽  
Jiahuan Xu ◽  
WenYang Li ◽  
Xingjian Wang ◽  
Zheng Qin ◽  
...  

2021 ◽  
Author(s):  
Yu Gu ◽  
Xiang Zhang ◽  
Huan Yan ◽  
Zhi Liu ◽  
Fuji Ren

High-quality sleep is essential to our daily lives, and real-time monitoring of vital signs during sleep is beneficial. Current sleep monitoring solutions are mostly based on wearable sensors or cameras, the former is worse for sleep quality, the latter is worse for privacy, dissimilar to such methods, we implement our sleep monitoring system based on COTS WiFi devices. There are two challenges need to be overcome in the system implementation process: First, the torso deformation caused by breathing/heartbeat is weak, how to effectively capture this deformation? Second, movements such as turning over will affect the accuracy of vital signs monitoring, how to quickly distinguish such movements? For the former, we propose a motion detection capability enhancement method based on Rice-K theory and Fresnel theory. For the latter, we propose a sleep motion positioning algorithm based on regularity detection. The experimental results indicated the performance of our method.


Sign in / Sign up

Export Citation Format

Share Document