Structure, Mechanism, and Substrate Profiles of the Trinuclear Metallophosphatases from the Amidohydrolase Superfamily

Author(s):  
Swapnil V. Ghodge ◽  
Frank M. Raushel
Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 892
Author(s):  
Lea Winand ◽  
Dustin Joshua Vollmann ◽  
Jacqueline Hentschel ◽  
Markus Nett

Heterocycles are important building blocks in pharmaceutical drugs and their enzymatic synthesis is attracting increasing interest. In recent years, various enzymes of the amidohydrolase superfamily were reported to catalyze heterocycle-forming condensation reactions. One of these enzymes, MxcM, is biochemically and kinetically characterized in this study. MxcM generates an imidazoline moiety in the biosynthesis of the natural product pseudochelin A, which features potent anti-inflammatory properties. The enzyme shows maximal activity at 50 °C and pH 10 as well as a kcat/Km value of 22,932 s−1 M−1 at its temperature optimum. Experimental data suggest that the activity of MxcM does not depend on a catalytic metal ion, which is uncommon among amidohydrolases. MxcM is highly active in diverse organic solvents and concentrated salt solutions. Furthermore, we show that MxcM is also capable to introduce imidazoline rings into derivatives of its natural substrate myxochelin B. Overall, MxcM is a solvent-stable, halotolerant enzyme with promising biochemical and kinetic properties and, in future, might become a valuable biocatalyst for the manufacturing of pharmaceutical drugs.


Structure ◽  
2020 ◽  
Vol 28 (6) ◽  
pp. 635-642.e3
Author(s):  
Maybelle Kho Go ◽  
Li Na Zhao ◽  
Bo Xue ◽  
Shreyas Supekar ◽  
Robert C. Robinson ◽  
...  

Biochemistry ◽  
2010 ◽  
Vol 49 (31) ◽  
pp. 6791-6803 ◽  
Author(s):  
Dao Feng Xiang ◽  
Yury Patskovsky ◽  
Chengfu Xu ◽  
Alexander A. Fedorov ◽  
Elena V. Fedorov ◽  
...  

2012 ◽  
Vol 78 (18) ◽  
pp. 6647-6655 ◽  
Author(s):  
Yu Zhang ◽  
Jiao An ◽  
Wei Ye ◽  
Guangyu Yang ◽  
Zhi-Gang Qian ◽  
...  

ABSTRACTThe phosphotriesterase-like lactonase (PLL) enzymes in the amidohydrolase superfamily hydrolyze various lactones and exhibit latent phosphotriesterase activities. These enzymes serve as attractive templates forin vitroevolution of neurotoxic organophosphates (OPs) with hydrolytic capabilities that can be used as bioremediation tools. Here, a thermostable PLL fromGeobacillus kaustophilusHTA426 (GkaP) was targeted for joint laboratory evolution with the aim of enhancing its catalytic efficiency against OP pesticides. By a combination of site saturation mutagenesis and whole-gene error-prone PCR approaches, several improved variants were isolated. The most active variant, 26A8C, accumulated eight amino acid substitutions and demonstrated a 232-fold improvement over the wild-type enzyme in reactivity (kcat/Km) for the OP pesticideethyl-paraoxon. Concomitantly, this variant showed a 767-fold decrease in lactonase activity with δ-decanolactone, imparting a specificity switch of 1.8 × 105-fold. 26A8C also exhibited high hydrolytic activities (19- to 497-fold) for several OP pesticides, including parathion, diazinon, and chlorpyrifos. Analysis of the mutagenesis sites on the GkaP structure revealed that most mutations are located in loop 8, which determines substrate specificity in the amidohydrolase superfamily. Molecular dynamics simulation shed light on why 26A8C lost its native lactonase activity and improved the promiscuous phosphotriesterase activity. These results permit us to obtain further insights into the divergent evolution of promiscuous enzymes and suggest that laboratory evolution of GkaP may lead to potential biological solutions for the efficient decontamination of neurotoxic OP compounds.


2007 ◽  
Vol 189 (19) ◽  
pp. 6998-7006 ◽  
Author(s):  
Sad Halak ◽  
Tamara Basta ◽  
Sibylle Bürger ◽  
Matthias Contzen ◽  
Victor Wray ◽  
...  

ABSTRACT The 4-carboxymethylen-4-sulfo-but-2-en-olide (4-sulfomuconolactone) hydrolases from Hydrogenophaga intermedia strain S1 and Agrobacterium radiobacter strain S2 are part of a modified protocatechuate pathway responsible for the degradation of 4-sulfocatechol. In both strains, the hydrolase-encoding genes occur downstream of those encoding the enzymes that catalyze the lactonization of 3-sulfomuconate. The deduced amino acid sequences of the 4-sulfomuconolactone hydrolases demonstrated the highest degree of sequence identity to 2-pyrone-4,6-dicarboxylate hydrolases, which take part in the meta cleavage pathway of protocatechuate. The 4-sulfomuconolactone hydrolases did not convert 2-pyrone-4,6-dicarboxylate, and the 2-pyrone-4,6-dicarboxylate hydrolase from Sphingomonas paucimobilis SYK-6 did not convert 4-sulfomuconolactone. Nevertheless, the presence of highly conserved histidine residues in the 4-sulfomuconolactone and the 2-pyrone-4,6-dicarboxylate hydrolases and some further sequence similarities suggested that both enzymes belong to the metallo-dependent hydrolases (the “amidohydrolase superfamily”). The 4-sulfomuconolactone hydrolases were heterologously expressed as His-tagged enzyme variants. Gel filtration experiments suggested that the enzymes are present as monomers in solution, with molecular weights of approximately 33,000 to 35,000. 4-Sulfomuconolactone was converted by sulfomuconolactone hydrolases to stoichiometric amounts of maleylacetate and sulfite. The 4-sulfomuconolactone hydrolases from both strains showed pH optima at pH 7 to 7.5 and rather similar catalytic constant (k cat/K M )values. The suggested 4-sulfocatechol pathway from 4-sulfocatechol to maleylacetate was confirmed by in situ nuclear magnetic resonance analysis using the recombinantly expressed enzymes.


Biochemistry ◽  
2014 ◽  
Vol 53 (4) ◽  
pp. 614-616 ◽  
Author(s):  
Jason T. Bouvier ◽  
Fiona P. Groninger-Poe ◽  
Matthew Vetting ◽  
Steven C. Almo ◽  
John A. Gerlt

Biochemistry ◽  
2006 ◽  
Vol 45 (21) ◽  
pp. 6628-6634 ◽  
Author(s):  
Tingfeng Li ◽  
Hiroaki Iwaki ◽  
Rong Fu ◽  
Yoshie Hasegawa ◽  
Hong Zhang ◽  
...  

2019 ◽  
Author(s):  
Tyler Stack ◽  
Katelyn Morrison ◽  
Thomas Dettmer ◽  
Brendan Wille ◽  
Chan Kim ◽  
...  

<p>L-Ascorbate (vitamin C) is ubiquitous in both our diet and the environment. <i>Ralstonia eutropha </i>H16 (<i>Cupriavidus necator </i>ATCC 17699) uses L-ascorbate as sole carbon source but lacks the genes encoding the known catabolic pathways. RNAseq identified eight candidate catabolic genes. Sequence similarity networks and genome neighborhood networks guided predictions for function of the encoded proteins; the predictions were confirmed by <i>in vitro</i> assays and <i>in vivo</i> growth phenotypes of gene deletion mutants. L-Ascorbate, a lactone, is oxidized and ring-opened by enzymes in the cytochrome b<sub>561</sub> and gluconolactonase families, respectively, to form 2,3-diketo-L-gulonate. A protein predicted to have a WD40-like fold catalyzes an unprecedented benzilic acid rearrangement involving migration of a carboxylate group to form 2-carboxy-L-lyxonolactone; the lactone is hydrolyzed by a member of the amidohydrolase superfamily to yield 2-carboxy-L-lyxonate. A member of the PdxA family of oxidative decarboxylases catalyzes a novel decarboxylation that uses NAD<sup>+</sup> catalytically. The product, L-lyxonate, is catabolized to alpha-ketoglutarate by a previously characterized pathway.</p>


Sign in / Sign up

Export Citation Format

Share Document