scholarly journals 4-Sulfomuconolactone Hydrolases from Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2

2007 ◽  
Vol 189 (19) ◽  
pp. 6998-7006 ◽  
Author(s):  
Sad Halak ◽  
Tamara Basta ◽  
Sibylle Bürger ◽  
Matthias Contzen ◽  
Victor Wray ◽  
...  

ABSTRACT The 4-carboxymethylen-4-sulfo-but-2-en-olide (4-sulfomuconolactone) hydrolases from Hydrogenophaga intermedia strain S1 and Agrobacterium radiobacter strain S2 are part of a modified protocatechuate pathway responsible for the degradation of 4-sulfocatechol. In both strains, the hydrolase-encoding genes occur downstream of those encoding the enzymes that catalyze the lactonization of 3-sulfomuconate. The deduced amino acid sequences of the 4-sulfomuconolactone hydrolases demonstrated the highest degree of sequence identity to 2-pyrone-4,6-dicarboxylate hydrolases, which take part in the meta cleavage pathway of protocatechuate. The 4-sulfomuconolactone hydrolases did not convert 2-pyrone-4,6-dicarboxylate, and the 2-pyrone-4,6-dicarboxylate hydrolase from Sphingomonas paucimobilis SYK-6 did not convert 4-sulfomuconolactone. Nevertheless, the presence of highly conserved histidine residues in the 4-sulfomuconolactone and the 2-pyrone-4,6-dicarboxylate hydrolases and some further sequence similarities suggested that both enzymes belong to the metallo-dependent hydrolases (the “amidohydrolase superfamily”). The 4-sulfomuconolactone hydrolases were heterologously expressed as His-tagged enzyme variants. Gel filtration experiments suggested that the enzymes are present as monomers in solution, with molecular weights of approximately 33,000 to 35,000. 4-Sulfomuconolactone was converted by sulfomuconolactone hydrolases to stoichiometric amounts of maleylacetate and sulfite. The 4-sulfomuconolactone hydrolases from both strains showed pH optima at pH 7 to 7.5 and rather similar catalytic constant (k cat/K M )values. The suggested 4-sulfocatechol pathway from 4-sulfocatechol to maleylacetate was confirmed by in situ nuclear magnetic resonance analysis using the recombinantly expressed enzymes.

2013 ◽  
Vol 8 (12) ◽  
pp. 1183-1193 ◽  
Author(s):  
Marcin Maciąga ◽  
Michał Szkop ◽  
Andrzej Paszkowski

AbstractSix allozymes of aspartate aminotransferase (AAT, EC 2.6.1.1): three plastidial (AAT-2 zone) and three cytosolic (AAT-3 zone) were isolated from common wheat (Triticum aestivum) seedlings and highly purified by a five-step purification procedure. The identity of the studied proteins was confirmed by mass spectrometry. The molecular weight of AAT allozymes determined by gel filtration was 72.4±3.6 kDa. The molecular weights of plastidial and cytosolic allozymes estimated by SDS-PAGE were 45.3 and 43.7 kDa, respectively. The apparent Michaelis constant (K m) values determined for four substrates appeared to be very similar for each allozyme. The values of the turnover number (k cat) and the k cat/K m ratio calculated for allozymes with L-aspartate as a leading substrate were in the range of 88.5–103.8 s−1/10,412–10,795 s−1 M−1 for AAT-2 zone and 4.6–7.0 s−1/527–700 s−1 M−1 for AAT-3 zone. These results clearly demonstrated much higher catalytic efficiency of AAT-2 allozymes. Therefore, partial sequences of cDNA encoding AATs from different zones were obtained using the RT-PCR technique. Comparison of the AAT-2 and AAT-3 amino acid sequences from active site regions revealed five non-conservative substitutions, which impact on the observed differences in the isozymes catalytic efficiency is discussed.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2707 ◽  
Author(s):  
Yuji Aso ◽  
Mei Sano ◽  
Ryoki Yada ◽  
Tomonari Tanaka ◽  
Takashi Aoki ◽  
...  

Renewable vinyl compounds itaconic acid (IA) and its derivative 10-hydroxyhexylitaconic acid (10-HHIA) are naturally produced by fungi from biomass. This provides the opportunity to develop new biobased polyvinyls from IA and 10-HHIA monomers. In this study, we copolymerized these monomers at different ratios through free radical aqueous polymerization with potassium peroxodisulfate as an initiator, resulting in poly(IA-co-10-HHIA)s with different monomer compositions. We characterized the thermal properties of the polymers by thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). The nuclear magnetic resonance analysis and the gel permeation chromatography showed that the polymerization conversion, yield, and the molecular weights (weight-averaged Mw and number-averaged Mn) of the synthesized poly(IA-co-10-HHIA)s decreased with increasing 10-HHIA content. It is suggested that the hydroxyhexyl group of 10-HHIA inhibited the polymerization. The TGA results indicated that the poly(IA-co-10-HHIA)s continuously decomposed as temperature increased. The FT-IR analysis suggested that the formation of the hydrogen bonds between the carboxyl groups of IA and 10-HHIA in the polymer chains was promoted by heating and consequently the polymer dehydration occurred. To the best of our knowledge, this is the first time that biobased polyvinyls were synthesized using naturally occurring IA derivatives.


2002 ◽  
Vol 184 (19) ◽  
pp. 5261-5274 ◽  
Author(s):  
Katrin Pollmann ◽  
Stefan Kaschabek ◽  
Victor Wray ◽  
Walter Reineke ◽  
Dietmar H. Pieper

ABSTRACT Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ 1H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone.


2008 ◽  
Vol 63 (1-2) ◽  
pp. 105-112 ◽  
Author(s):  
Margarita Marinova ◽  
Alexander Dolashki ◽  
Florian Altenberend ◽  
Stefan Stevanovic ◽  
Wolfgang Voelter ◽  
...  

Aminopeptidase, preferring phenylalanine-p-nitroanilide as substrate, and proline iminopeptidase, highly-specific for proline-p-nitroanilide, were isolated from cabbage leaves (Brassica oleraceae var. capitata). As pH optima, 7.2−7.5 for aminopeptidase activity and 8.0−8.5 for proline iminopeptidase were determined. Both peptidases were strongly inhibited by p-chloromercuribenzoic acid, heavy metal ions and urea. The molecular weights were determined by gel filtration to be 56 and 204 kDa, respectively. The iminopeptidase was decomposed during SDS electrophoresis to four subunits of 50 kDa. Minor impurities of myrosinase- associated protein (~70 kDa) were found in both preparations. Preliminary data of their amino acid sequences showed similarities to those of aminopeptidases N (family M1) and proline iminopeptidases (family S33).


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2291 ◽  
Author(s):  
Xiao-Jie Liu ◽  
Jie Zhang ◽  
Peng-Hui Hong ◽  
Zheng-Jun Li

Considering the industrial interest of biodegradable polymer poly-3-hydroxybutyrate (PHB), the marine bacteriaNeptunomonas antarcticawas studied for its ability to accumulate PHB. The extracted polymer was confirmed to be PHB by nuclear magnetic resonance analysis. In shake flask cultures using natural seawater as medium components, PHB was produced up to 2.12 g/L with a yield of 0.18 g PHB/g fructose. In the presence of artificial seawater, the PHB titer and yield reached 2.13 g/L and 0.13 g PHB/g fructose, respectively. The accumulated polymer gradually decreased when fructose was exhausted, indicating that intracellular PHB was degraded byN. antarctica. The weight-average and number-average molecular weights of PHB produced within natural seawater were 2.4 × 105g/mol and 1.7 × 105g/mol, respectively. Our results highlight the potential ofN. antarcticafor PHB production with seawater as a nutrient source.


1979 ◽  
Author(s):  
Takashi Morita ◽  
Craig Jackson

Bovine Factor X is eluted in two forms (X1and X2) from anion exchange chromatographic columns. These two forms have indistinguishable amino acid compositions, molecular weights and specific activities. The amino acid sequences containing the γ-carboxyglutamic acid residues have been shown to be identical in X1 and X2(H. Morris, personal communication). An activation peptide is released from the N-terminal region of the heavy chain of Factor X by an activator from Russell’s viper venom. This peptide can be isolated after activation by gel filtration on Sephadex G-100 under nondenaturing conditions. The activation peptides from a mixture of Factors X1 and X2 were separated into two forms by anion-exchange chromatography. The activation peptide (AP1) which eluted first was shown to be derived from Factor X1. while the activation peptiae (AP2) which eluted second was shown to be derived from X2 on the basis of chromatographic separations carried out on Factors X1 and X2 separately. Factor Xa was eluted as a symmetrical single peak. On the basis of these and other data characterizing these products, we conclude that the difference between X1 and X2 are properties of the structures of the activation peptides. (Supported by a grant HL 12820 from the National Heart, Lung and Blood Institute. C.M.J. is an Established Investigator of the American Heart Association).


1987 ◽  
Author(s):  
Theresa Bacon-Baguley ◽  
Suzanne Kendra-Franczak ◽  
Daniel Walz

Thrombospondin (TSP) is responsible for the secretion-dependent phase of platelet aggregation. The mechanism of this action is believed to be through the binding of TSP to fibrinogen, resulting in the stabilization of the platelet aggregate. It has been established that the binding of fibrinogen to the platelet surface is dependent upon peptide sequences present, respectively, in the Aa- and y-chains. We have hypothesized that the binding of TSP to fibrinogen is also dependent upon unique fibrinogen peptide sequences. To test this hypothesis we have examined the interaction of TSP and f.ih.r.inogen. using..a.-blat-b.inding assaLy of reduced fibrinogen, the separated fibrinogen chains, selected fibrinogen domains or peptides generated from cyanogen bromide cleaved chains. Iodinated TSP bound specifically to the Aα - and Bβ - chains. Binding to these chains was calcium independent, mutually exclusive and could be blocked either by preincubation of TSP with 9.4 μ M fibrinogen or by preincubation of fibrinogen with 1.1 nM thrombospondin. TSP bound to the D and DD plasmin fragment of fibrinogen; TSP interacted exclusively with the B-chain component of the DD fragment. The cyanogen bromide fragments of the separated Aα - and Bβ -chains were resolved through a combination of gel filtration and reverse-phase chromatography. TSP was found to bind to a single peptide within these fibrinogen chains. These studies demonstrate that thrombospondin interacts with at least two distinct sites on fibrinogen, and these sites differ from those already described for fibrinogen binding to platelets.


Author(s):  
Rahma R. Z. Mahdy ◽  
Shaimaa A. Mo’men ◽  
Marah M. Abd El-Bar ◽  
Emad M. S. Barakat

Abstract Background Insect lipid mobilization and transport are currently under research, especially lipases and lipophorin because of their roles in the production of energy and lipid transport at a flying activity. The present study has been conducted to purify intracellular fat body lipase for the first time, from the last larval instar of Galleria mellonella. Results Purification methods by combination of ammonium sulfate [(NH4)2SO4] precipitation and gel filtration using Sephadex G-100 demonstrated that the amount of protein and the specific activity of fat body lipase were 0.008633 ± 0.000551 mg/ml and 1.5754 ± 0.1042 μmol/min/mg protein, respectively, with a 98.9 fold purity and recovery of 50.81%. Hence, the sephadex G-100 step was more effective in the purification process. SDS-PAGE and zymogram revealed that fat body lipase showed two monomers with molecular weights of 178.8 and 62.6 kDa. Furthermore, biochemical characterization of fat body lipase was carried out through testing its activities against several factors, such as different temperatures, pH ranges, metal ions, and inhibitors ending by determination of their kinetic parameters with the use of p-nitrophenyl butyrate (PNPB) as a substrate. The highest activities of enzyme were determined at the temperature ranges of 35–37 °C and 37–40 °C and pH ranges of 7–9 and 7–10. The partially purified enzyme showed significant stimulation by Ca2+, K+, and Na+ metal ions indicating that fat body lipase is metalloproteinase. Lipase activity was strongly inhibited by some inhibitors; phenylmethylsulfonyl fluoride (PMSF), ethylene-diaminetetractic acid (EDTA), and ethylene glycoltetraacetic acid (EGTA) providing evidence of the presence of serine residue and activation of enzymes by metal ions. Kinetic parameters were 0.316 Umg− 1 Vmax and 301.95 mM Km. Conclusion Considering the purification of fat body lipase from larvae and the usage of some inhibitors especially ion chelating agents, it is suggested to develop a successful control of Galleria mellonella in near future by using lipase inhibitors.


1985 ◽  
Vol 40 (11) ◽  
pp. 1075-1084
Author(s):  
W. T. Sobol ◽  
K.R. Sridharan ◽  
I. G. Cameron ◽  
M. M. Pintar

The frequency dependence of the spin-lattice relaxation time T1 was measured at three temperatures near one of the Zeeman-tunneling level matching resonances for pentamethylbenzene. These measurements are correlated with 71 temperature dependence data from the literature. It is shown that the frequency dependence of the Zeeman-torsion coupling time cannot be explained in terms of the semiclassical perturbation theory using time correlation functions. A three bath polarization transfer model is also employed and the applicability of both models discussed. Zeeman-torsion coupling is further investigated using a saturation sequence and the results are compared with the predictions of the three bath polarization transfer model.


Sign in / Sign up

Export Citation Format

Share Document