Intrinsically disordered proteins and phenotypic switching: Implications in cancer

Author(s):  
Vivek Kulkarni ◽  
Prakash Kulkarni
Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1490
Author(s):  
Prakash Kulkarni

The past quarter-century may justly be referred to as a period analogous to the “Cambrian explosion” in the history of proteins. This period is marked by the appearance of the intrinsically disordered proteins (IDPs) on the scene since their discovery in the mid-1990s. Here, I first reflect on how we accidentally stumbled on these fascinating molecules. Next, I describe our research on the IDPs over the past decade and identify six areas as important for future research in this field. In addition, I draw on discoveries others in the field have made to present a more comprehensive essay. More specifically, I discuss the role of IDPs in two fundamental aspects of life: in phenotypic switching, and in multicellularity that marks one of the major evolutionary transitions. I highlight how serendipity, imagination, and an interdisciplinary approach embodying empirical evidence and theoretical insights from the works of Poincaré, Waddington, and Lamarck, shaped our thinking, and how this led us to propose the MRK hypothesis, a conceptual framework addressing phenotypic switching, the emergence of new traits, and adaptive evolution via nongenetic and IDP conformation-based mechanisms. Finally, I present a perspective on the evolutionary link between phenotypic switching and the origin of multicellularity.


2019 ◽  
Author(s):  
Ruchi Lohia ◽  
Reza Salari ◽  
Grace Brannigan

<div>The role of electrostatic interactions and mutations that change charge states in intrinsically disordered proteins (IDPs) is well-established, but many disease-associated mutations in IDPs are charge-neutral. The Val66Met single nucleotide polymorphism (SNP) encodes a hydrophobic-to-hydrophobic mutation at the midpoint of the prodomain of precursor brain-derived neurotrophic factor (BDNF), one of the earliest SNPs to be associated with neuropsychiatric disorders, for which the underlying molecular mechanism is unknown. Here we report on over 250 μs of fully-atomistic, explicit solvent, temperature replica exchange molecular dynamics simulations of the 91 residue BDNF prodomain, for both the V66 and M66 sequence.</div><div>The simulations were able to correctly reproduce the location of both local and non-local secondary changes due to the Val66Met mutation when compared with NMR spectroscopy. We find that the local structure change is mediated via entropic and sequence specific effects. We show that the highly disordered prodomain can be meaningfully divided into domains based on sequence alone. Monte Carlo simulations of a self-excluding heterogeneous polymer, with monomers representing each domain, suggest the sequence would be effectively segmented by the long, highly disordered polyampholyte near the sequence midpoint. This is qualitatively consistent with observed interdomain contacts within the BDNF prodomain, although contacts between the two segments are enriched relative to the self-excluding polymer. The Val66Met mutation increases interactions across the boundary between the two segments, due in part to a specific Met-Met interaction with a Methionine in the other segment. This effect propagates to cause the non-local change in secondary structure around the second methionine, previously observed in NMR. The effect is not mediated simply via changes in inter-domain contacts but is also dependent on secondary structure formation around residue 66, indicating a mechanism for secondary structure coupling in disordered proteins. </div>


Sign in / Sign up

Export Citation Format

Share Document