The antipode of the noncrossing partition lattice

2019 ◽  
Vol 110 ◽  
pp. 76-85
Author(s):  
Richard Ehrenborg ◽  
Alex Happ
10.37236/5940 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Melody Bruce ◽  
Michael Dougherty ◽  
Max Hlavacek ◽  
Ryo Kudo ◽  
Ian Nicolas

There is a well-known bijection between parking functions of a fixed length and maximal chains of the noncrossing partition lattice which we can use to associate to each set of parking functions a poset whose Hasse diagram is the union of the corresponding maximal chains. We introduce a decomposition of parking functions based on the largest number omitted and prove several theorems about the corresponding posets. In particular, they share properties with the noncrossing partition lattice such as local self-duality, a nice characterization of intervals, a readily computable Möbius function, and a symmetric chain decomposition. We also explore connections with order complexes, labeled Dyck paths, and rooted forests.


10.37236/9253 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
C. Matthew Farmer ◽  
Joshua Hallam ◽  
Clifford Smyth

The partition lattice and noncrossing partition lattice are well studied objects in combinatorics. Given a graph $G$ on vertex set $\{1,2,\dots, n\}$, its bond lattice, $L_G$, is the subposet of the partition lattice formed by restricting to the partitions whose blocks induce connected subgraphs of $G$. In this article, we introduce a natural noncrossing analogue of the bond lattice, the noncrossing bond poset, $NC_G$, obtained by restricting to the noncrossing partitions of $L_G$. Both the noncrossing partition lattice and the bond lattice have many nice combinatorial properties. We show that, for several families of graphs, the noncrossing bond poset also exhibits these properties. We present simple necessary and sufficient conditions on the graph to ensure the noncrossing bond poset is a lattice.  Additionally, for several families of graphs, we give combinatorial descriptions of the Möbius function and characteristic polynomial of the noncrossing bond poset. These descriptions are in terms of a noncrossing analogue of non-broken circuit (NBC) sets of the graphs and can be thought of as a noncrossing version of Whitney's NBC theorem for the chromatic polynomial. We also consider the shellability and supersolvability of the noncrossing bond poset, providing sufficient conditions for both. We end with some open problems. 


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Vivien Ripoll

International audience When $W$ is a finite reflection group, the noncrossing partition lattice $NC(W)$ of type $W$ is a very rich combinatorial object, extending the notion of noncrossing partitions of an $n$-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in $NC(W)$ as a generalized Fuß-Catalan number, depending on the invariant degrees of $W$. We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of $NC(W)$ as fibers of a "Lyashko-Looijenga covering''. This covering is constructed from the geometry of the discriminant hypersurface of $W$. We deduce new enumeration formulas for certain factorizations of a Coxeter element of $W$. Lorsque $W$ est un groupe de réflexion fini, le treillis $NC(W)$ des partitions non-croisées de type $W$ est un objet combinatoire très riche, qui généralise la notion de partitions non-croisées d'un $n$-gone. Une formule (seulement prouvée au cas par cas à l'heure actuelle) exprime le nombre de chaînes de longueur donnée dans $NC(W)$ sous la forme d'un nombre de Fuß-Catalan généralisé, qui dépend des degrés invariants de $W$. Nous décrivons une stratégie visant à comprendre certaines spécifications de cette formule de manière uniforme, en utilisant une interprétation des chaînes de $NC(W)$ comme fibres d'un "revêtement de Lyashko-Looijenga''. Ce revêtement est construit à partir de la géométrie de l'hypersurface du discriminant de $W$. Nous en déduisons de nouvelles formules de comptage pour certaines factorisations d'un élément de Coxeter de $W$.


10.37236/7212 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Michael Dougherty ◽  
Jon McCammond

There are two natural simplicial complexes associated to the noncrossing partition lattice: the order complex of the full lattice and the order complex of the lattice with its bounding elements removed. The latter is a complex that we call the noncrossing partition link because it is the link of an edge in the former. The first author and his coauthors conjectured that various collections of simplices of the noncrossing partition link (determined by the undesired parking spaces in the corresponding parking functions) form contractible subcomplexes. In this article we prove their conjecture by combining the fact that the star of a simplex in a flag complex is contractible with the second author's theory of noncrossing hypertrees.


1962 ◽  
Vol 14 ◽  
pp. 451-460 ◽  
Author(s):  
David Sachs

It is well known (1, p. 162) that the lattice of subalgebras of a finite Boolean algebra is dually isomorphic to a finite partition lattice. In this paper we study the lattice of subalgebras of an arbitrary Boolean algebra. One of our main results is that the lattice of subalgebras characterizes the Boolean algebra. In order to prove this result we introduce some notions which enable us to give a characterization and representation of the lattices of subalgebras of a Boolean algebra in terms of a closure operator on the lattice of partitions of the Boolean space associated with the Boolean algebra. Our theory then has some analogy to that of the lattice theory of topological vector spaces. Of some interest is the problem of classification of Boolean algebras in terms of the properties of their lattice of subalgebras, and we obtain some results in this direction.


2010 ◽  
Vol 53 (2) ◽  
pp. 299-310 ◽  
Author(s):  
Thomas Brady ◽  
Colum Watt

AbstractFor each finite real reflection group W, we identify a copy of the type-W simplicial generalized associahedron inside the corresponding simplicial permutahedron. This defines a bijection between the facets of the generalized associahedron and the elements of the type-W non-crossing partition lattice that is more tractable than previous such bijections. We show that the simplicial fan determined by this associahedron coincides with the Cambrian fan for W.


1980 ◽  
Vol 10 (1) ◽  
pp. 74-95 ◽  
Author(s):  
Pavel Pudlák ◽  
Jiří T⫲ma

Sign in / Sign up

Export Citation Format

Share Document