scholarly journals Undesired Parking Spaces and Contractible Pieces of the Noncrossing Partition Link

10.37236/7212 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Michael Dougherty ◽  
Jon McCammond

There are two natural simplicial complexes associated to the noncrossing partition lattice: the order complex of the full lattice and the order complex of the lattice with its bounding elements removed. The latter is a complex that we call the noncrossing partition link because it is the link of an edge in the former. The first author and his coauthors conjectured that various collections of simplices of the noncrossing partition link (determined by the undesired parking spaces in the corresponding parking functions) form contractible subcomplexes. In this article we prove their conjecture by combining the fact that the star of a simplex in a flag complex is contractible with the second author's theory of noncrossing hypertrees.


10.37236/5940 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Melody Bruce ◽  
Michael Dougherty ◽  
Max Hlavacek ◽  
Ryo Kudo ◽  
Ian Nicolas

There is a well-known bijection between parking functions of a fixed length and maximal chains of the noncrossing partition lattice which we can use to associate to each set of parking functions a poset whose Hasse diagram is the union of the corresponding maximal chains. We introduce a decomposition of parking functions based on the largest number omitted and prove several theorems about the corresponding posets. In particular, they share properties with the noncrossing partition lattice such as local self-duality, a nice characterization of intervals, a readily computable Möbius function, and a symmetric chain decomposition. We also explore connections with order complexes, labeled Dyck paths, and rooted forests.



2019 ◽  
Vol 110 ◽  
pp. 76-85
Author(s):  
Richard Ehrenborg ◽  
Alex Happ


10.37236/9253 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
C. Matthew Farmer ◽  
Joshua Hallam ◽  
Clifford Smyth

The partition lattice and noncrossing partition lattice are well studied objects in combinatorics. Given a graph $G$ on vertex set $\{1,2,\dots, n\}$, its bond lattice, $L_G$, is the subposet of the partition lattice formed by restricting to the partitions whose blocks induce connected subgraphs of $G$. In this article, we introduce a natural noncrossing analogue of the bond lattice, the noncrossing bond poset, $NC_G$, obtained by restricting to the noncrossing partitions of $L_G$. Both the noncrossing partition lattice and the bond lattice have many nice combinatorial properties. We show that, for several families of graphs, the noncrossing bond poset also exhibits these properties. We present simple necessary and sufficient conditions on the graph to ensure the noncrossing bond poset is a lattice.  Additionally, for several families of graphs, we give combinatorial descriptions of the Möbius function and characteristic polynomial of the noncrossing bond poset. These descriptions are in terms of a noncrossing analogue of non-broken circuit (NBC) sets of the graphs and can be thought of as a noncrossing version of Whitney's NBC theorem for the chromatic polynomial. We also consider the shellability and supersolvability of the noncrossing bond poset, providing sufficient conditions for both. We end with some open problems. 



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Vivien Ripoll

International audience When $W$ is a finite reflection group, the noncrossing partition lattice $NC(W)$ of type $W$ is a very rich combinatorial object, extending the notion of noncrossing partitions of an $n$-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in $NC(W)$ as a generalized Fuß-Catalan number, depending on the invariant degrees of $W$. We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of $NC(W)$ as fibers of a "Lyashko-Looijenga covering''. This covering is constructed from the geometry of the discriminant hypersurface of $W$. We deduce new enumeration formulas for certain factorizations of a Coxeter element of $W$. Lorsque $W$ est un groupe de réflexion fini, le treillis $NC(W)$ des partitions non-croisées de type $W$ est un objet combinatoire très riche, qui généralise la notion de partitions non-croisées d'un $n$-gone. Une formule (seulement prouvée au cas par cas à l'heure actuelle) exprime le nombre de chaînes de longueur donnée dans $NC(W)$ sous la forme d'un nombre de Fuß-Catalan généralisé, qui dépend des degrés invariants de $W$. Nous décrivons une stratégie visant à comprendre certaines spécifications de cette formule de manière uniforme, en utilisant une interprétation des chaînes de $NC(W)$ comme fibres d'un "revêtement de Lyashko-Looijenga''. Ce revêtement est construit à partir de la géométrie de l'hypersurface du discriminant de $W$. Nous en déduisons de nouvelles formules de comptage pour certaines factorisations d'un élément de Coxeter de $W$.





10.37236/6958 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Sara Faridi ◽  
Svenja Huntemann ◽  
Richard J. Nowakowski

Strong placement games (SP-games) are a class of combinatorial games whose structure allows one to describe the game via simplicial complexes. A natural question is whether well-known parameters of combinatorial games, such as "game value", appear as invariants of the simplicial complexes. This paper is the first step in that direction. We show that every simplicial complex encodes a certain type of SP-game (called an "invariant SP-game") whose ruleset is independent of the board it is played on. We also show that in the class of SP-games isomorphic simplicial complexes correspond to isomorphic game trees, and hence equal game values. We also study a subclass of SP-games corresponding to flag complexes, showing that there is always a game whose corresponding complex is a flag complex no matter which board it is played on.



10.37236/67 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Alexander Berglund

Shellability is a well-known combinatorial criterion on a simplicial complex $\Delta$ for verifying that the associated Stanley-Reisner ring $k[\Delta]$ is Cohen-Macaulay. A notion familiar to commutative algebraists, but which has not received as much attention from combinatorialists as the Cohen-Macaulay property, is the notion of a Golod ring. Recently, Jöllenbeck introduced a criterion on simplicial complexes reminiscent of shellability, called the strong gcd-condition, and he together with the author proved that it implies Golodness of the associated Stanley-Reisner ring. The two algebraic notions were earlier tied together by Herzog, Reiner and Welker, who showed that if $k[\Delta^\vee]$ is sequentially Cohen-Macaulay, where $\Delta^\vee$ is the Alexander dual of $\Delta$, then $k[\Delta]$ is Golod. In this paper, we present a combinatorial companion of this result, namely that if $\Delta^\vee$ is (non-pure) shellable then $\Delta$ satisfies the strong gcd-condition. Moreover, we show that all implications just mentioned are strict in general but that they are equivalences if $\Delta$ is a flag complex.



10.37236/1335 ◽  
1996 ◽  
Vol 4 (2) ◽  
Author(s):  
Richard P. Stanley

A parking function is a sequence $(a_1,\dots,a_n)$ of positive integers such that, if $b_1\leq b_2\leq \cdots\leq b_n$ is the increasing rearrangement of the sequence $(a_1,\dots, a_n),$ then $b_i\leq i$. A noncrossing partition of the set $[n]=\{1,2,\dots,n\}$ is a partition $\pi$ of the set $[n]$ with the property that if $a < b < c < d$ and some block $B$ of $\pi$ contains both $a$ and $c$, while some block $B'$ of $\pi$ contains both $b$ and $d$, then $B=B'$. We establish some connections between parking functions and noncrossing partitions. A generating function for the flag $f$-vector of the lattice NC$_{n+1}$ of noncrossing partitions of $[{\scriptstyle n+1}]$ is shown to coincide (up to the involution $\omega$ on symmetric function) with Haiman's parking function symmetric function. We construct an edge labeling of NC$_{n+1}$ whose chain labels are the set of all parking functions of length $n$. This leads to a local action of the symmetric group ${S}_n$ on NC$_{n+1}$.



Author(s):  
Dejan Govc ◽  
Ran Levi ◽  
Jason P. Smith

AbstractComplete digraphs are referred to in the combinatorics literature as tournaments. We consider a family of semi-simplicial complexes, that we refer to as “tournaplexes”, whose simplices are tournaments. In particular, given a digraph $${\mathcal {G}}$$ G , we associate with it a “flag tournaplex” which is a tournaplex containing the directed flag complex of $${\mathcal {G}}$$ G , but also the geometric realisation of cliques that are not directed. We define several types of filtrations on tournaplexes, and exploiting persistent homology, we observe that flag tournaplexes provide finer means of distinguishing graph dynamics than the directed flag complex. We then demonstrate the power of these ideas by applying them to graph data arising from the Blue Brain Project’s digital reconstruction of a rat’s neocortex.



10.37236/7200 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Julia Heller ◽  
Petra Schwer

For any finite Coxeter group $W$ of rank $n$ we show that the order complex of the lattice of non-crossing partitions $\mathrm{NC}(W)$ embeds as a chamber subcomplex into a spherical building of type $A_{n-1}$. We use this to give a new proof of the fact that the non-crossing partition lattice in type $A_n$ is supersolvable for all $n$. Moreover, we show that in case $B_n$, this is only the case if $n<4$. We also obtain a lower bound on the radius of the Hurwitz graph $H(W)$ in all types and re-prove that in type $A_n$ the radius is $\binom{n}{2}$. A Corrigendum for this paper was added on May 17, 2018.



Sign in / Sign up

Export Citation Format

Share Document