scholarly journals Submaximal factorizations of a Coxeter element in complex reflection groups

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Vivien Ripoll

International audience When $W$ is a finite reflection group, the noncrossing partition lattice $NC(W)$ of type $W$ is a very rich combinatorial object, extending the notion of noncrossing partitions of an $n$-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in $NC(W)$ as a generalized Fuß-Catalan number, depending on the invariant degrees of $W$. We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of $NC(W)$ as fibers of a "Lyashko-Looijenga covering''. This covering is constructed from the geometry of the discriminant hypersurface of $W$. We deduce new enumeration formulas for certain factorizations of a Coxeter element of $W$. Lorsque $W$ est un groupe de réflexion fini, le treillis $NC(W)$ des partitions non-croisées de type $W$ est un objet combinatoire très riche, qui généralise la notion de partitions non-croisées d'un $n$-gone. Une formule (seulement prouvée au cas par cas à l'heure actuelle) exprime le nombre de chaînes de longueur donnée dans $NC(W)$ sous la forme d'un nombre de Fuß-Catalan généralisé, qui dépend des degrés invariants de $W$. Nous décrivons une stratégie visant à comprendre certaines spécifications de cette formule de manière uniforme, en utilisant une interprétation des chaînes de $NC(W)$ comme fibres d'un "revêtement de Lyashko-Looijenga''. Ce revêtement est construit à partir de la géométrie de l'hypersurface du discriminant de $W$. Nous en déduisons de nouvelles formules de comptage pour certaines factorisations d'un élément de Coxeter de $W$.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Henri Mühle

International audience We prove that the noncrossing partition lattices associated with the complex reflection groups G(d, d, n) for d, n ≥ 2 admit a decomposition into saturated chains that are symmetric about the middle ranks. A consequence of this result is that these lattices have the strong Sperner property, which asserts that the cardinality of the union of the k largest antichains does not exceed the sum of the k largest ranks for all k ≤ n. Subsequently, we use a computer to complete the proof that any noncrossing partition lattice associated with a well-generated complex reflection group is strongly Sperner, thus affirmatively answering a special case of a question of D. Armstrong. This was previously established only for the Coxeter groups of type A and B.


10.37236/5940 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Melody Bruce ◽  
Michael Dougherty ◽  
Max Hlavacek ◽  
Ryo Kudo ◽  
Ian Nicolas

There is a well-known bijection between parking functions of a fixed length and maximal chains of the noncrossing partition lattice which we can use to associate to each set of parking functions a poset whose Hasse diagram is the union of the corresponding maximal chains. We introduce a decomposition of parking functions based on the largest number omitted and prove several theorems about the corresponding posets. In particular, they share properties with the noncrossing partition lattice such as local self-duality, a nice characterization of intervals, a readily computable Möbius function, and a symmetric chain decomposition. We also explore connections with order complexes, labeled Dyck paths, and rooted forests.


2019 ◽  
Vol 110 ◽  
pp. 76-85
Author(s):  
Richard Ehrenborg ◽  
Alex Happ

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Christopher Severs ◽  
Jacob White

International audience In this paper, we study k-parabolic arrangements, a generalization of the k-equal arrangement for any finite real reflection group. When k=2, these arrangements correspond to the well-studied Coxeter arrangements. Brieskorn (1971) showed that the fundamental group of the complement of the type W Coxeter arrangement (over $\mathbb{C}$) is isomorphic to the pure Artin group of type W. Khovanov (1996) gave an algebraic description for the fundamental group of the complement of the 3-equal arrangement (over $\mathbb{R}$). We generalize Khovanov's result to obtain an algebraic description of the fundamental group of the complement of the 3-parabolic arrangement for arbitrary finite reflection group. Our description is a real analogue to Brieskorn's description. Nous généralisons les arrangements k-égaux à tous les groupes de réflexions finis réels. Les arrangements ainsi obtenus sont dits k-paraboliques. Dans le cas où k = 2 nous retrouvons les arrangements de Coxeter qui sont bien connus. En 1971, Brieskorn démontra que le groupe fondamental associé au complément (complexe) de l'arrangement de Coxeter de type W est en fait isomorphe au groupe pure d'Artin de type W . En 1996, Khovanov donne une description algébrique du groupe fondamental du complément (réel) de l'arrangement 3-égaux. Nous généralisons le résultat de Khovanov et obtenons une description algébrique du groupe fondamental de l'espace complément d'un arrangement k-parabolique pour tous les groupes de réflexions finis et réels. Il se trouve que notre description est l'analogue réel de la description de Brieskorn.


10.37236/9253 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
C. Matthew Farmer ◽  
Joshua Hallam ◽  
Clifford Smyth

The partition lattice and noncrossing partition lattice are well studied objects in combinatorics. Given a graph $G$ on vertex set $\{1,2,\dots, n\}$, its bond lattice, $L_G$, is the subposet of the partition lattice formed by restricting to the partitions whose blocks induce connected subgraphs of $G$. In this article, we introduce a natural noncrossing analogue of the bond lattice, the noncrossing bond poset, $NC_G$, obtained by restricting to the noncrossing partitions of $L_G$. Both the noncrossing partition lattice and the bond lattice have many nice combinatorial properties. We show that, for several families of graphs, the noncrossing bond poset also exhibits these properties. We present simple necessary and sufficient conditions on the graph to ensure the noncrossing bond poset is a lattice.  Additionally, for several families of graphs, we give combinatorial descriptions of the Möbius function and characteristic polynomial of the noncrossing bond poset. These descriptions are in terms of a noncrossing analogue of non-broken circuit (NBC) sets of the graphs and can be thought of as a noncrossing version of Whitney's NBC theorem for the chromatic polynomial. We also consider the shellability and supersolvability of the noncrossing bond poset, providing sufficient conditions for both. We end with some open problems. 


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Victor Reiner ◽  
Vivien Ripoll ◽  
Christian Stump

International audience Given an irreducible well-generated complex reflection group $W$ with Coxeter number $h$, we call a Coxeter element any regular element (in the sense of Springer) of order $h$ in $W$; this is a slight extension of the most common notion of Coxeter element. We show that the class of these Coxeter elements forms a single orbit in $W$ under the action of reflection automorphisms. For Coxeter and Shephard groups, this implies that an element $c$ is a Coxeter element if and only if there exists a simple system $S$ of reflections such that $c$ is the product of the generators in $S$. We moreover deduce multiple further implications of this property. In particular, we obtain that all noncrossing partition lattices of $W$ associated to different Coxeter elements are isomorphic. We also prove that there is a simply transitive action of the Galois group of the field of definition of $W$ on the set of conjugacy classes of Coxeter elements. Finally, we extend several of these properties to Springer's regular elements of arbitrary order. Étant donnés un groupe de réflexion complexe $W$, irréductible et bien engendré, et $h$ son nombre de Coxeter, nous appelons élément de Coxeter un élément régulier (au sens de Springer) d’ordre $h$; ceci est une extension de la notion la plus habituelle d’élément de Coxeter. Nous montrons que l’ensemble de ces éléments de Coxeter forme une seule orbite sous l’action des automorphismes de réflexion de $W$. Pour les groupes de Coxeter et de Shephard, ceci implique qu’un élément $c$ est un élément de Coxeter si et seulement s’il existe un système simple $S$ de réflexions tel que $c$ soit le produit des générateurs dans $S$. Nous déduisons de cette propriété plusieurs autres résultats. En particulier, nous obtenons que tous les treillis de partitions non-croisées de $W$, associés à différents éléments de Coxeter, sont isomorphes. Nous montrons également qu’il existe une action simplement transitive du groupe de Galois du corps de définition de $W$ sur l’ensemble des classes de conjugaison d’éléments de Coxeter. Enfin, nous étendons plusieurs de ces propriétés au cas des éléments réguliers d’ordre quelconque.


10.37236/7212 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Michael Dougherty ◽  
Jon McCammond

There are two natural simplicial complexes associated to the noncrossing partition lattice: the order complex of the full lattice and the order complex of the lattice with its bounding elements removed. The latter is a complex that we call the noncrossing partition link because it is the link of an edge in the former. The first author and his coauthors conjectured that various collections of simplices of the noncrossing partition link (determined by the undesired parking spaces in the corresponding parking functions) form contractible subcomplexes. In this article we prove their conjecture by combining the fact that the star of a simplex in a flag complex is contractible with the second author's theory of noncrossing hypertrees.


2020 ◽  
pp. 1-48
Author(s):  
Joel Brewster Lewis ◽  
Alejandro H. Morales

Abstract We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type. As one application of our results, we give a previously overlooked characterization of the poset of W-noncrossing partitions.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
François Bergeron ◽  
Nicolas Borie ◽  
Nicolas M. Thiéry

arXiv : http://arxiv.org/abs/1011.3654 International audience We introduce deformations of the space of (multi-diagonal) harmonic polynomials for any finite complex reflection group of the form W=G(m,p,n), and give supporting evidence that this space seems to always be isomorphic, as a graded W-module, to the undeformed version. Nous introduisons une déformation de l'espace des polynômes harmoniques (multi-diagonaux) pour tout groupe de réflexions complexes de la forme W=G(m,p,n), et soutenons l'hypothèse que cet espace est toujours isomorphe, en tant que W-module gradué, à l'espace d'origine.


Sign in / Sign up

Export Citation Format

Share Document