Safety evaluation of signalized intersections with left-turn waiting area in China

2016 ◽  
Vol 95 ◽  
pp. 461-469 ◽  
Author(s):  
Xinguo Jiang ◽  
Guopeng Zhang ◽  
Wei Bai ◽  
Wenbo Fan
2021 ◽  
Author(s):  
Anwarul Haq Dogar

Traffic accidents cause a huge loss to the society. According to statistics, 50% of all accidents occur at urban intersections and 47% of these are due to left-turn collisions. Countermeasure Implementation at these locations therefore can play a vital role in the improvement of traffic safety. This study illustrates a methodology for evaluation of urban 4-legged signalized intersections treated with left-turn priority phasing. The methodology is applied to three important collisions types: those due to left-turn collisions; those due to left-turn side impact collisions; and all impact types combined collisions. Data used in this analysis were obtained from the City of Toronto. Safety Performance Functions for left-turn and all impact types combined collisions which were developed by the City of Toronto, were calibrated and used in an empirical Bayesian methodology that was employed to estimate the expected frequency of accidents occurring at each intersection in order to evaluate the effectiveness of left-turn priority phasing in reducing this frequency. The results revealed that left-turn priority phasing can be an effective treatment for addressing and reducing the number of collision at signalized intersections. Flashing advance green phasing is more effective in improving safety for two of three types; all left-turn and all impact types combined collisions. Left-turn green arrow (protected/permissive) phasing is more effective for left-turn side impact collisions. By implementing this type of treatment, the number of crashes and the associated monetary loss to society could be significantly reduced.


2021 ◽  
Author(s):  
Anwarul Haq Dogar

Traffic accidents cause a huge loss to the society. According to statistics, 50% of all accidents occur at urban intersections and 47% of these are due to left-turn collisions. Countermeasure Implementation at these locations therefore can play a vital role in the improvement of traffic safety. This study illustrates a methodology for evaluation of urban 4-legged signalized intersections treated with left-turn priority phasing. The methodology is applied to three important collisions types: those due to left-turn collisions; those due to left-turn side impact collisions; and all impact types combined collisions. Data used in this analysis were obtained from the City of Toronto. Safety Performance Functions for left-turn and all impact types combined collisions which were developed by the City of Toronto, were calibrated and used in an empirical Bayesian methodology that was employed to estimate the expected frequency of accidents occurring at each intersection in order to evaluate the effectiveness of left-turn priority phasing in reducing this frequency. The results revealed that left-turn priority phasing can be an effective treatment for addressing and reducing the number of collision at signalized intersections. Flashing advance green phasing is more effective in improving safety for two of three types; all left-turn and all impact types combined collisions. Left-turn green arrow (protected/permissive) phasing is more effective for left-turn side impact collisions. By implementing this type of treatment, the number of crashes and the associated monetary loss to society could be significantly reduced.


2016 ◽  
Vol 43 (7) ◽  
pp. 631-642 ◽  
Author(s):  
Yanyong Guo ◽  
Tarek Sayed ◽  
Mohamed H. Zaki ◽  
Pan Liu

The objective of this study is to evaluate the safety impacts of unconventional outside left-turn lane at signalized intersections. New designed unconventional outside left-turn lanes are increasingly used at signalized intersections in urban areas in China. The unconventional outside left-turn lane design allows an exclusive left-turn lane to be located to the right of through lanes to improve the efficiency and increase the capacity of left-turn movements. However, the design also raises some concerns regarding potential negative safety impacts. The evaluation is conducted using an automated video-based traffic conflict technique. The traffic conflicts approach provides better understanding of collision contributing factors and the failure mechanism that leads to road collisions. Traffic conflicts are automatically detected and time to collision is calculated based on the analysis of the vehicles’ positions in space and time. Video data are collected from a signalized intersection in Nanjing, China, where both traditional inside and unconventional outside left-turn lanes are installed on two intersection approaches. The other two approaches have only inside left-turn lanes. The study compared frequency and severity of conflict for left-turning vehicles as well as the percentage of vehicles involved in conflicts from the inside and outside left-turn lanes. The results show that the intersection approaches with outside left-turn lanes had considerably more conflicts compared to approaches without outside left-turn lanes. As well, the approaches with outside left-turn lanes had significantly higher conflict severity than the approaches without outside left-turn lanes. As such, it is recommended that the trade-off between the improved mobility and negative safety impact of outside left-turn lanes be carefully considered before recommending their installation.


2021 ◽  
Vol 13 (23) ◽  
pp. 13154
Author(s):  
Xiancai Jiang ◽  
Li Yao ◽  
Yao Jin ◽  
Runting Wu

This paper proposes a signal control method for the through and left-turn shared lanes at signalized intersections to solve traffic conflicts between left-turn vehicles and opposing through vehicles by setting left-turn waiting area (LWA). Delays and stops are weighted to form an integrated performance index (PI) in a vehicle-to-infrastructure cooperation system. The PI models pertaining to all vehicles are established based on the LWA intersection. In addition, an optimized method of signal timing parameters is constructed by minimizing the average PI. VISSIM simulation shows that the average PI decreases by 6.51% compared with the original layout and signal timing plan of the intersection, since the increased delay of the side-road left-turn vehicles is insufficient to offset the reduced delay of the side-road through vehicles after the improvement. The sensitivity analysis shows that the greater the traffic volume of the phase including the through and left-turn shared lanes, the higher the operation efficiency of the LWA intersection compared with the typical permitted phase intersection. When the left-turn vehicles of the shared lanes in each cycle are less than the stop spaces, the LWA intersection can effectively reduce the average PI of the shared lanes. Furthermore, the more the stop spaces in the LWA, the lower the average PI in the same traffic conditions.


2021 ◽  
Author(s):  
Maria Espinosa

Automated vehicles (AVs) are expected to offer great benefits by potentially reducing crashes. The safety at signalized intersections is influenced by several factors, one of them being the driving behavior. By introducing AVs on the roads, the unpredictability of this factor will potentially decrease and eventually, reduce crashes. By using microsimulation, it was possible to use simulated traffic conflicts as indicators of potential crashes, to analyze the potential safety of signalized intersections in the presence of automated vehicles. The objective was to compare crash frequency for signalized intersections at various AVs penetration levels (0%, 50% and 100%) by using prediction models that relate crashes to conflicts. Furthermore, the effect on crashes of introducing hypothetical left turn treatments was also evaluated. The results indicated that intersection safety may improve in the presence of AVs. However, the safety effects of treatments may be reduced compared to the effects with no AVs.


2021 ◽  
Author(s):  
Maria Espinosa

Automated vehicles (AVs) are expected to offer great benefits by potentially reducing crashes. The safety at signalized intersections is influenced by several factors, one of them being the driving behavior. By introducing AVs on the roads, the unpredictability of this factor will potentially decrease and eventually, reduce crashes. By using microsimulation, it was possible to use simulated traffic conflicts as indicators of potential crashes, to analyze the potential safety of signalized intersections in the presence of automated vehicles. The objective was to compare crash frequency for signalized intersections at various AVs penetration levels (0%, 50% and 100%) by using prediction models that relate crashes to conflicts. Furthermore, the effect on crashes of introducing hypothetical left turn treatments was also evaluated. The results indicated that intersection safety may improve in the presence of AVs. However, the safety effects of treatments may be reduced compared to the effects with no AVs.


Author(s):  
Zihang Wei ◽  
Yunlong Zhang ◽  
Xiaoyu Guo ◽  
Xin Zhang

Through movement capacity is an essential factor used to reflect intersection performance, especially for signalized intersections, where a large proportion of vehicle demand is making through movements. Generally, left-turn spillback is considered a key contributor to affect through movement capacity, and blockage to the left-turn bay is known to decrease left-turn capacity. Previous studies have focused primarily on estimating the through movement capacity under a lagging protected only left-turn (lagging POLT) signal setting, as a left-turn spillback is more likely to happen under such a condition. However, previous studies contained assumptions (e.g., omit spillback), or were dedicated to one specific signal setting. Therefore, in this study, through movement capacity models based on probabilistic modeling of spillback and blockage scenarios are established under four different signal settings (i.e., leading protected only left-turn [leading POLT], lagging left-turn, protected plus permitted left-turn, and permitted plus protected left-turn). Through microscopic simulations, the proposed models are validated, and compared with existing capacity models and the one in the Highway Capacity Manual (HCM). The results of the comparisons demonstrate that the proposed models achieved significant advantages over all the other models and obtained high accuracies in all signal settings. Each proposed model for a given signal setting maintains consistent accuracy across various left-turn bay lengths. The proposed models of this study have the potential to serve as useful tools, for practicing transportation engineers, when determining the appropriate length of a left-turn bay with the consideration of spillback and blockage, and the adequate cycle length with a given bay length.


Sign in / Sign up

Export Citation Format

Share Document