An in vitro microdialysis methodology to study 11β-hydroxysteroid dehydrogenase type 1 enzyme activity in liver microsomes

2007 ◽  
Vol 370 (1) ◽  
pp. 26-37 ◽  
Author(s):  
Li Sun ◽  
Julie A. Stenken ◽  
Amy Y. Yang ◽  
Jamie J. Zhao ◽  
Donald G. Musson
1999 ◽  
Vol 84 (4) ◽  
pp. 1340-1345
Author(s):  
V. L. Green ◽  
V. Speirs ◽  
A. M. Landolt ◽  
P. M. Foy ◽  
S. L. Atkin

17β-Hydroxysteroid dehydrogenase (17βHSD) isoforms reversibly catalyze the final step in the formation of estradiol (E2) from estrone (E1) and the formation of testosterone from androstenedione. We have investigated 17βHSD type 1, 2, 3, and 4 gene expression and 17βHSD estrogenic activity in human anterior pituitary adenomas. 17βHSD messenger ribonucleic acid (mRNA) expression was studied by RT-PCR in 42 pituitary tumors and 3 normal pituitaries, 17βHSD activity was studied in 11 tumors and 17βHSD type 1 was immunolocalized in vitro in 6 tumors. 17βHSD type 1 gene expression was detected in 34 of 42 adenomas in all tumor subtypes; 17βHSD type 2 mRNA was detected in 18 of 42 adenomas, but not in prolactinomas; 17βHSD type 3 mRNA was detected in 12 of 42 adenomas, but not in corticotropinomas; 17βHSD type 4 was expressed in 20 of 42 adenomas by all adenoma subtypes. Reversible 17βHSD activity was found in 9 of 11 adenomas, and 17βHSD type 1 immunopositivity was cytoplasmically distributed in all 6 adenomas in vitro. All 4 17βHSD isoforms are variably expressed in human anterior pituitary adenomas, which also show 17βHSD enzyme activity, suggesting that 17βHSD may play an important role in regulating the local cellular levels of estradiol.


2016 ◽  
Vol 31 (sup3) ◽  
pp. 61-69 ◽  
Author(s):  
Bianka Edina Herman ◽  
Johanna Szabó ◽  
Ildikó Bacsa ◽  
János Wölfling ◽  
Gyula Schneider ◽  
...  

2013 ◽  
Vol 154 (8) ◽  
pp. 283-293 ◽  
Author(s):  
Karolina Feldman ◽  
István Likó ◽  
Zsolt Nagy ◽  
Ágnes Szappanos ◽  
Vince Kornél Grolmusz ◽  
...  

Glucocorticoids play an important role in the regulation of carbohydrate and amino acid metabolism, they modulate the function of the immune system, and contribute to stress response. Increased and decreased production of glucocorticoids causes specific diseases. In addition to systemic hypo- or hypercortisolism, alteration of local synthesis and metabolism of cortisol may result in tissue-specific hypo- or hypercortisolism. One of the key enzymes participating in the local synthesis and metabolism of cortisol is the 11β-hydroxysteroid dehydrogenase enzyme. Two isoforms, type 1 and type 2 enzymes are located in the endoplasmic reticulum and catalyze the interconversion of hormonally active cortisol and inactive cortisone. The type 1 enzyme mainly works as an activator, and it is responsible for the generation of cortisol from cortisone in liver, adipose tissue, brain and bone. The gene encoding this enzyme is located on chromosome 1. The authors review the physiological and pathophysiological processes related to the function of the type 1 11β-hydroxysteroid dehydrogenase enzyme. They summarize the potential significance of polymorphic variants of the enzyme in clinical diseases as well as knowledge related to inhibitors of enzyme activity. Although further studies are still needed, inhibition of the enzyme activity may prove to be an effective tool for the treatment of several diseases such as obesity, osteoporosis and type 2 diabetes. Orv. Hetil., 2013, 154, 283–293.


2012 ◽  
Vol 28 (4) ◽  
pp. 695-703 ◽  
Author(s):  
Ágnes Berényi ◽  
Martin Frotscher ◽  
Sandrine Marchais-Oberwinkler ◽  
Rolf W. Hartmann ◽  
Renáta Minorics ◽  
...  

2012 ◽  
Vol 33 (9) ◽  
pp. 1195-1203 ◽  
Author(s):  
Yue-jing Wang ◽  
Su-ling Huang ◽  
Ying Feng ◽  
Meng-meng Ning ◽  
Ying Leng

Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Elise L. V. Malavasi ◽  
Val Kelly ◽  
Nikita Nath ◽  
Alessandra Gambineri ◽  
Rachel S. Dakin ◽  
...  

Abstract Regeneration of active glucocorticoids within liver and adipose tissue by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) may be of pathophysiological importance in obesity and metabolic syndrome and is a therapeutic target in type 2 diabetes. Polymorphisms in HSD11B1, the gene encoding 11β-HSD1, have been associated with metabolic phenotype in humans, including type 2 diabetes and hypertension. Here, we have tested the functional consequences of two single nucleotide polymorphisms located in contexts that potentially affect tissue levels of 11β-HSD1. We report no effect of allelic variation at rs846910, a polymorphism within the 5′-flanking region of the gene on HSD11B1 promoter activity in vitro. However, compared with the common G allele, the A allele of rs13306421, a polymorphism located two nucleotides 5′ to the translation initiation site, gave higher 11β-HSD1 expression and activity in vitro and was translated at higher levels in in vitro translation reactions, possibly associated with a lower frequency of “leaky scanning.” These data suggest that this polymorphism may have direct functional consequences on levels of 11β-HSD1 enzyme activity in vivo. However, the rs13306421 A sequence variant originally reported in other ethnic groups may be of low prevalence because it was not detected in a population of 600 European Caucasian women.


Sign in / Sign up

Export Citation Format

Share Document