scholarly journals Development of a bioassay for detection of Wnt-binding affinities for individual frizzled receptors

2010 ◽  
Vol 401 (2) ◽  
pp. 288-294 ◽  
Author(s):  
Kendra S. Carmon ◽  
David S. Loose
Author(s):  
Raghava R. Sunkara ◽  
Shruti Koulgi ◽  
Vinod Jani ◽  
Nikhil Gadewal ◽  
Uddhavesh Sonavane ◽  
...  

2020 ◽  
Vol 64 (2) ◽  
pp. 325-336 ◽  
Author(s):  
Dimitriya H. Garvanska ◽  
Jakob Nilsson

Abstract Kinetochores are instrumental for accurate chromosome segregation by binding to microtubules in order to move chromosomes and by delaying anaphase onset through the spindle assembly checkpoint (SAC). Dynamic phosphorylation of kinetochore components is key to control these activities and is tightly regulated by temporal and spatial recruitment of kinases and phosphoprotein phosphatases (PPPs). Here we focus on PP1, PP2A-B56 and PP2A-B55, three PPPs that are important regulators of mitosis. Despite the fact that these PPPs share a very similar active site, they target unique ser/thr phosphorylation sites to control kinetochore function. Specificity is in part achieved by PPPs binding to short linear motifs (SLiMs) that guide their substrate specificity. SLiMs bind to conserved pockets on PPPs and are degenerate in nature, giving rise to a range of binding affinities. These SLiMs control the assembly of numerous substrate specifying complexes and their position and binding strength allow PPPs to target specific phosphorylation sites. In addition, the activity of PPPs is regulated by mitotic kinases and inhibitors, either directly at the activity level or through affecting PPP–SLiM interactions. Here, we discuss recent progress in understanding the regulation of PPP specificity and activity and how this controls kinetochore biology.


2020 ◽  
Author(s):  
Maximilian Kuhn ◽  
Stuart Firth-Clark ◽  
Paolo Tosco ◽  
Antonia S. J. S. Mey ◽  
Mark Mackey ◽  
...  

Free energy calculations have seen increased usage in structure-based drug design. Despite the rising interest, automation of the complex calculations and subsequent analysis of their results are still hampered by the restricted choice of available tools. In this work, an application for automated setup and processing of free energy calculations is presented. Several sanity checks for assessing the reliability of the calculations were implemented, constituting a distinct advantage over existing open-source tools. The underlying workflow is built on top of the software Sire, SOMD, BioSimSpace and OpenMM and uses the AMBER14SB and GAFF2.1 force fields. It was validated on two datasets originally composed by Schrödinger, consisting of 14 protein structures and 220 ligands. Predicted binding affinities were in good agreement with experimental values. For the larger dataset the average correlation coefficient Rp was 0.70 ± 0.05 and average Kendall’s τ was 0.53 ± 0.05 which is broadly comparable to or better than previously reported results using other methods. <br>


2020 ◽  
Author(s):  
Zhaoxi Sun

Host-guest binding remains a major challenge in modern computational modelling. The newest 7<sup>th</sup> statistical assessment of the modeling of proteins and ligands (SAMPL) challenge contains a new series of host-guest systems. The TrimerTrip host binds to 16 structurally diverse guests. Previously, we have successfully employed the spherical coordinates as the collective variables coupled with the enhanced sampling technique metadynamics to enhance the sampling of the binding/unbinding event, search for possible binding poses and predict the binding affinities in all three host-guest binding cases of the 6<sup>th</sup> SAMPL challenge. In this work, we employed the same protocol to investigate the TrimerTrip host in the SAMPL7 challenge. As no binding pose is provided by the SAMPL7 host, our simulations initiate from randomly selected configurations and are proceeded long enough to obtain converged free energy estimates and search for possible binding poses. The predicted binding affinities are in good agreement with the experimental reference, and the obtained binding poses serve as a nice starting point for end-point or alchemical free energy calculations.


2019 ◽  
Author(s):  
Elena Prigorchenko ◽  
Sandra Kaabel ◽  
Triin Narva ◽  
Anastassia Baškir ◽  
Maria Fomitšenko ◽  
...  

Amplification of a thermodynamically unfavoured macrocyclic product through the directed shift of the equilibrium between dynamic covalent chemistry library members is difficult to achieve. We show for the first time that during condensation of formaldehyde and <i>cis</i>-<i>N,N'</i>-cyclohexa-1,2-diylurea formation of <i>inverted-cis</i>-cyclohexanohemicucurbit[6]uril (<i>i-cis</i>-cycHC[6]) can be induced at the expense of thermodynamically favoured <i>cis</i>-cyclohexanohemicucurbit[6]uril (<i>cis</i>-cycHC[6]). The formation of <i>i-cis-</i>cycHC[6] is enhanced in low concentration of the templating chloride anion and suppressed in excess of this template. We found that reaction selectivity is governed by the solution-based template-aided dynamic combinatorial chemistry and continuous removal of the formed cycHC[6] macrocycles from the equilibrating solution by precipitation. Notably, the <i>i-cis</i>-cycHC[6] was isolated with 33% yield. Different binding affinities of three diastereomeric <i>i-cis</i>-, <i>cis</i>-cycHC[6] and their chiral isomer (<i>R,R</i>)-cycHC[6] for trifluoroacetic acid demonstrate the influence of macrocycle geometry on complex formation.


2003 ◽  
Vol 10 (4) ◽  
pp. 331-345 ◽  
Author(s):  
Jenny Yang ◽  
Amy Gawthrop ◽  
Yiming Ye

2019 ◽  
Vol 26 (26) ◽  
pp. 4964-4983 ◽  
Author(s):  
CongBao Kang

Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.


Sign in / Sign up

Export Citation Format

Share Document