The development of single-molecule reaction inside nanoconfinement is benefit to study the intrinsic molecular mechanism of a complex chemical reaction. However, the reaction kinetics model of single-molecule reaction inside confinement remains elusive. Herein we engineered the Aerolysin nanopore reactor to elaborate the single-molecule reaction kinetics inside nanoconfinement. By identifying bond forming and non-forming events directly, a four-state kinetics model is proposed for the first time. Our results demonstrated that the single-molecule reaction kinetics inside a nanopore depends on the voltage-dependent frequency of captured individual reactant and the fraction of effective collision inside nanopore confined space. This new insight will guide the design of nanoconfinement for resolving the single-molecule chemistry, and shed light on the mechanistic understanding of dynamic covalent chemistry in-side a nanopore