Damage identification using 2-D discrete wavelet transform on extended operational mode shapes

2015 ◽  
Vol 15 (3) ◽  
pp. 698-710 ◽  
Author(s):  
M. Makki Alamdari ◽  
J. Li ◽  
B. Samali
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 714
Author(s):  
Andrzej Katunin

The paper aims to analyze the performance of the damage identification algorithms using the directional wavelet transforms, which reveal higher sensitivity for various orientations of spatial damage together with lower susceptibility to noise. In this study, the algorithms based on the dual-tree, the double-density, and the dual-tree double-density wavelet transforms were considered and compared to the algorithm based on the discrete wavelet transform. The performed analyses are based on shearographic experimental tests of a composite plate with artificially introduced damage at various orientations. It was shown that the directional wavelet transforms are characterized by better performance in damage identification problems than the basic discrete wavelet transform. Moreover, the proposed approach based on entropic weights applicable to the resulting sets of the detail coefficients after decomposition of mode shapes can be effectively used for automatic selection and emphasizing those sets of the detail coefficients, which contain relevant diagnostic information about damage. The proposed processing method allows raw experimental results from shearography to be significantly enhanced. The developed algorithms can be successfully implemented in a shearographic testing for enhancement of a sensitivity to damage during routine inspections in various industrial sectors.


Informatica ◽  
2013 ◽  
Vol 24 (4) ◽  
pp. 657-675
Author(s):  
Jonas Valantinas ◽  
Deividas Kančelkis ◽  
Rokas Valantinas ◽  
Gintarė Viščiūtė

2020 ◽  
Vol 64 (3) ◽  
pp. 30401-1-30401-14 ◽  
Author(s):  
Chih-Hsien Hsia ◽  
Ting-Yu Lin ◽  
Jen-Shiun Chiang

Abstract In recent years, the preservation of handwritten historical documents and scripts archived by digitized images has been gradually emphasized. However, the selection of different thicknesses of the paper for printing or writing is likely to make the content of the back page seep into the front page. In order to solve this, a cost-efficient document image system is proposed. In this system, the authors use Adaptive Directional Lifting-Based Discrete Wavelet Transform to transform image data from spatial domain to frequency domain and perform on high and low frequencies, respectively. For low frequencies, the authors use local threshold to remove most background information. For high frequencies, they use modified Least Mean Square training algorithm to produce a unique weighted mask and perform convolution on original frequency, respectively. Afterward, Inverse Adaptive Directional Lifting-Based Discrete Wavelet Transform is performed to reconstruct the four subband images to a resulting image with original size. Finally, a global binarization method, Otsu’s method, is applied to transform a gray scale image to a binary image as the output result. The results show that the difference in operation time of this work between a personal computer (PC) and Raspberry Pi is little. Therefore, the proposed cost-efficient document image system which performed on Raspberry Pi embedded platform has the same performance and obtains the same results as those performed on a PC.


Sign in / Sign up

Export Citation Format

Share Document