Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma

Author(s):  
Yinghao Meng ◽  
Hao Zhang ◽  
Qi Li ◽  
Fang Liu ◽  
Xu Fang ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Yinghao Meng ◽  
Hao Zhang ◽  
Qi Li ◽  
Fang Liu ◽  
Xu Fang ◽  
...  

PurposeTo develop and validate a machine learning classifier based on multidetector computed tomography (MDCT), for the preoperative prediction of tumor–stroma ratio (TSR) expression in patients with pancreatic ductal adenocarcinoma (PDAC).Materials and MethodsIn this retrospective study, 227 patients with PDAC underwent an MDCT scan and surgical resection. We quantified the TSR by using hematoxylin and eosin staining and extracted 1409 arterial and portal venous phase radiomics features for each patient, respectively. Moreover, we used the least absolute shrinkage and selection operator logistic regression algorithm to reduce the features. The extreme gradient boosting (XGBoost) was developed using a training set consisting of 167 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 60 consecutive patients, admitted between January 2018 and April 2018. We determined the XGBoost classifier performance based on its discriminative ability, calibration, and clinical utility.ResultsWe observed low and high TSR in 91 (40.09%) and 136 (59.91%) patients, respectively. A log-rank test revealed significantly longer survival for patients in the TSR-low group than those in the TSR-high group. The prediction model revealed good discrimination in the training (area under the curve [AUC]= 0.93) and moderate discrimination in the validation set (AUC= 0.63). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 94.06%, 81.82%, 0.89, 0.89, and 0.90, respectively, those for the validation set were 85.71%, 48.00%, 0.70, 0.70, and 0.71, respectively.ConclusionsThe CT radiomics-based XGBoost classifier provides a potentially valuable noninvasive tool to predict TSR in patients with PDAC and optimize risk stratification.


2021 ◽  
Author(s):  
Itai Guez ◽  
Gili Focht ◽  
Mary-Louise C.Greer ◽  
Ruth Cytter-Kuint ◽  
Li-tal Pratt ◽  
...  

Background and Aims: Endoscopic healing (EH), is a major treatment goal for Crohn's disease(CD). However, terminal ileum (TI) intubation failure is common, especially in children. We evaluated the added-value of machine-learning models in imputing a TI Simple Endoscopic Score for CD (SES-CD) from Magnetic Resonance Enterography (MRE) data of pediatric CD patients. Methods: This is a sub-study of the prospective ImageKids study. We developed machine-learning and baseline linear-regression models to predict TI SES-CD score from the Magnetic Resonance Index of Activity (MaRIA) and the Pediatric Inflammatory Crohn's MRE Index (PICMI) variables. We assessed TI SES-CD predictions' accuracy for intubated patients with a stratified 2-fold validation experimental setup, repeated 50 times. We determined clinical impact by imputing TI SES-CD in patients with ileal intubation failure during ileocolonscopy. Results: A total of 223 children were included (mean age 14.1+-2.5 years), of whom 132 had all relevant variables (107 with TI intubation and 25 with TI intubation failure). The combination of a machine-learning model with the PICMI variables achieved the lowest SES-CD prediction error compared to a baseline MaRIA-based linear regression model for the intubated patients (N=107, 11.7 (10.5-12.5) vs. 12.1 (11.4-12.9), p<0.05). The PICMI-based models suggested a higher rate of patients with TI disease among the non-intubated patients compared to a baseline MaRIA-based linear regression model (N=25, up to 25/25 (100%) vs. 23/25 (92%)). Conclusions: Machine-learning models with clinically-relevant variables as input are more accurate than linear-regression models in predicting TI SES-CD and EH when using the same MRE-based variables.


2020 ◽  
Vol 45 (9) ◽  
pp. 2797-2809 ◽  
Author(s):  
Camila Lopes Vendrami ◽  
Robert J. McCarthy ◽  
Carolina Parada Villavicencio ◽  
Frank H. Miller

2021 ◽  
pp. 197140092199076
Author(s):  
Sarv Priya ◽  
Amit Agarwal ◽  
Caitlin Ward ◽  
Thomas Locke ◽  
Varun Monga ◽  
...  

Objective Magnetic resonance texture analysis (MRTA) is a relatively new technique that can be a valuable addition to clinical and imaging parameters in predicting prognosis. In the present study, we investigated the efficacy of MRTA for glioblastoma survival using T1 contrast-enhanced (CE) images for texture analysis. Methods We evaluated the diagnostic performance of multiple machine learning models based on first-order histogram statistical parameters derived from T1-weighted CE images in the survival stratification of glioblastoma multiforme (GBM). Retrospective evaluation of 85 patients with GBM was performed. Thirty-six first-order texture parameters at six spatial scale filters (SSF) were extracted on the T1 CE axial images for the whole tumor using commercially available research software. Several machine learning classification models (in four broad categories: linear, penalized linear, non-linear, and ensemble classifiers) were evaluated to assess the survival prediction performance using optimal features. Principal component analysis was used prior to fitting the linear classifiers in order to reduce the dimensionality of the feature inputs. Fivefold cross-validation was used to partition the data iteratively into training and testing sets. The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance. Results The neural network model was the highest performing model with the highest observed AUC (0.811) and cross-validated AUC (0.71). The most important variable was the age at diagnosis, with mean and mean of positive pixels (MPP) for SSF = 0 being the second and third most important, followed by skewness for SSF = 0 and SSF = 4. Conclusions First-order texture features, when combined with age at presentation, show good accuracy in predicting GBM survival.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


Sign in / Sign up

Export Citation Format

Share Document