Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission

2010 ◽  
Vol 58 (5) ◽  
pp. 1503-1517 ◽  
Author(s):  
O. Muránsky ◽  
M.R. Barnett ◽  
D.G. Carr ◽  
S.C. Vogel ◽  
E.C. Oliver
2010 ◽  
Vol 652 ◽  
pp. 149-154 ◽  
Author(s):  
Ondrej Muránsky ◽  
Matthew R. Barnett ◽  
David G. Carr ◽  
Sven C. Vogel ◽  
E.C. Oliver

In the present work in situ neutron diffraction and acoustic emission were used concurrently to study deformation twinning in two ZM20 Mg alloys with significantly different grain sizes at room temperature. The combination of these techniques allows differentionation between the twin nucleation and the twin growth mechanisms. It is shown, that yielding and immediate post-yielding plasticity in compression is governed primarily by twin nucleation, whereas the plasticity at higher strains is governed by twin growth. The current results further suggest that yielding by twinning happens in a slightly different manner in the fine-grained as compared to the coarse-grained alloy.


2006 ◽  
Vol 524-525 ◽  
pp. 639-644 ◽  
Author(s):  
Kai Xiang Tao ◽  
Hahn Choo ◽  
H. Li ◽  
Bjørn Clausen ◽  
Donald W. Brown ◽  
...  

The martensitic phase transformation in an ultra fine grained (UFG) TRIP (transformation induced plasticity) steel with combination of high strength and high elongation was investigated during room temperature tensile test using in situ neutron diffraction. Two types of specimens, namely coarse grained (grain size of about 50 μm) and ultra-fine-grained (grain size of about 350 nm) specimens were examined. The lattice strain evolution of the austenite and martensite phases was observed and the load partitioning between the phases was identified.


JOM ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 223-232 ◽  
Author(s):  
Jan Čapek ◽  
Efthymios Polatidis ◽  
Michal Knapek ◽  
Christophe Lyphout ◽  
Nicola Casati ◽  
...  

AbstractThe deformation behavior of additively manufactured Alloy 718 in as-built condition and after annealing was studied in situ under tensile loading along the build direction. Pre-characterization by synchrotron X-ray diffraction and electron microscopy revealed a significant amount of γ″ precipitates in the as-built samples, whereas the γ″ phase was entirely consumed and needle-like δ precipitates appeared in the annealed sample. In situ neutron diffraction (ND) and acoustic emission (AE) enabled indirect observation of the role of the precipitates on the mechanical behavior. ND provided information on the load accommodation in the matrix, while AE detected a strong signal from the interaction of dislocations with the δ-phase precipitates during deformation of the annealed samples. The results imply that in the annealed samples the matrix sheds the load to the precipitates, while in the as-built material the matrix bares a significant load.


Sign in / Sign up

Export Citation Format

Share Document