scholarly journals Cardiac phenotype of mice with a loss of function in type I cAMP-dependent protein kinase (PKA)

2021 ◽  
Vol 13 (2) ◽  
pp. 211-212
Author(s):  
M. Dessillons ◽  
A. Varin ◽  
J. Cellier ◽  
D. Mika ◽  
V. Algalarrondo ◽  
...  
2001 ◽  
Vol 280 (6) ◽  
pp. L1282-L1289 ◽  
Author(s):  
Stephanie E. Porter ◽  
Lori D. Dwyer-Nield ◽  
Alvin M. Malkinson

Cell shape is mediated in part by the actin cytoskeleton and the actin-binding protein vinculin. These proteins in turn are regulated by protein phosphorylation. We assessed the contribution of cAMP-dependent protein kinase A isozyme I (PKA I) to lung epithelial morphology using the E10/E9 sibling cell lines. PKA I concentration is high in flattened, nontumorigenic E10 cells but low in their round E9 transformants. PKA I activity was lowered in E10 cells by stable transfection with a dominant negative RIα mutant of the PKA I regulatory subunit and was raised in E9 cells by stable transfection with a wild-type Cα catalytic subunit construct. Reciprocal changes in morphology ensued. E10 cells became rounder and grew in colonies, their actin microfilaments were disrupted, and vinculin localization at cell-cell junctions was diminished. The converse occurred in E9 cells on elevating their PKA I content. Demonstration that PKA I is responsible for the dichotomy in these cellular behaviors suggests that manipulating PKA I concentrations in lung cancer would provide useful adjuvant therapy.


Sign in / Sign up

Export Citation Format

Share Document