Role of Metal 3D Printing to Increase Quality and Resource-efficiency in the Construction Sector

2021 ◽  
pp. 102541
Author(s):  
Alper Kanyilmaz ◽  
Ali Gökhan Demir ◽  
Martina Chierici ◽  
Filippo Berto ◽  
Leroy Gardner ◽  
...  
Author(s):  
Enrique Javier Carrasco-Correa ◽  
Ernesto Francisco Simó-Alfonso ◽  
José Manuel Herrero-Martínez ◽  
Manuel Miró

2021 ◽  
Vol 11 (6) ◽  
pp. 517
Author(s):  
Martin Schulze ◽  
Georg Gosheger ◽  
Sebastian Bockholt ◽  
Marieke De Vaal ◽  
Tymo Budny ◽  
...  

The combination of 3D printing and navigation promises improvements in surgical procedures and outcomes for complex bone tumor resection of the trunk, but its features have rarely been described in the literature. Five patients with trunk tumors were surgically treated in our institution using a combination of 3D printing and navigation. The main process includes segmentation, virtual modeling and build preparation, as well as quality assessment. Tumor resection was performed with navigated instruments. Preoperative planning supported clear margin multiplanar resections with intraoperatively adaptable real-time visualization of navigated instruments. The follow-up ranged from 2–15 months with a good functional result. The present results and the review of the current literature reflect the trend and the diverse applications of 3D printing in the medical field. 3D printing at hospital sites is often not standardized, but regulatory aspects may serve as disincentives. However, 3D printing has an increasing impact on precision medicine, and we are convinced that our process represents a valuable contribution in the context of patient-centered individual care.


Cellulose ◽  
2021 ◽  
Author(s):  
Julen Vadillo ◽  
Izaskun Larraza ◽  
Tamara Calvo-Correas ◽  
Nagore Gabilondo ◽  
Christophe Derail ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sapam Ningthemba Singh ◽  
Vavilada Satya Swamy Venkatesh ◽  
Ashish Bhalchandra Deoghare

Purpose During the COVID-19 pandemic, the three-dimensional (3D) printing community is actively participating to address the supply chain gap of essential medical supplies such as face masks, face shields, door adapters, test swabs and ventilator valves. This paper aims to present a comprehensive study on the role of 3D printing during the coronavirus (COVID-19) pandemic, its safety and its challenges. Design/methodology/approach This review paper focuses on the applications of 3D printing in the fight against COVID-19 along with the safety and challenges associated with 3D printing to fight COVID-19. The literature presented in this paper is collected from the journal indexing engines including Scopus, Google Scholar, ResearchGate, PubMed, Web of Science, etc. The main keywords used for searches were 3D printing COVID-19, Safety of 3D printed parts, Sustainability of 3D printing, etc. Further possible iterations of the keywords were used to collect the literature. Findings The applications of 3D printing in the fight against COVID-19 are 3D printed face masks, shields, ventilator valves, test swabs, drug deliveries and hands-free door adapters. As most of these measures are implemented hastily, the safety and reliability of these parts often lacked approval. The safety concerns include the safety of the printed parts, operators and secondary personnel such as the workers in material preparation and transportation. The future challenges include sustainability of the process, long term supply chain, intellectual property and royalty-free models, etc. Originality/value This paper presents a comprehensive study on the applications of 3D printing in the fight against COVID-19 with emphasis on the safety and challenges in it.


2020 ◽  
Author(s):  
Ruben Perez-Mañanes ◽  
Sonia García de San José ◽  
Manuel Desco-Menéndez ◽  
Ignacio Sánchez-Arcilla ◽  
Esmeralda González-Fernández ◽  
...  

Abstract Background 3D printing and distributed manufacturing represent a paradigm shift in the health system that is becoming critical during the COVID-19 pandemic. University hospitals are also taking on the role of manufacturers of custom-made solutions thanks to 3D printing technology. Case Presentation We present a monocentric observational case study regarding the distributed manufacturing of three groups of products during the period of the COVID-19 pandemic from 14 March to 10 May 2020: personal protective equipment, ventilatory support, and diagnostic and consumable products. Networking during this period has enabled the delivery of a total of 17,276 units of products manufactured using 3D printing technology. The most manufactured product was the face shields and ear savers, while the one that achieved the greatest clinical impact was the mechanical ventilation adapters and swabs. The products were manufactured by individuals in 57.3% of the cases, and our hospital acted as the main delivery node in a hub with 10 other hospitals. The main advantage of this production model is the fast response to stock needs, being able to adapt almost in real time.Conclusions The role of 3D printing in the hospital environment allows the reconciliation of in-house and distributed manufacturing with traditional production, providing custom-made adaptation of the specifications, as well as maximum efficiency in the working and availability of resources, which is of special importance at critical times for health systems such as the current COVID-19 pandemic.


2019 ◽  
Author(s):  
A.A. Polienko ◽  
O.G. Tikhomirova

Author(s):  
Mohammadhossein Amini ◽  
Shing Chang

Metal 3D printing is one of the fastest growing additive manufacturing (AM) technologies in recent years. Despite the improvements and capabilities, reliable metal printing is still not well understood. One of the barriers of industrialization of metal AM is process monitoring and quality assurance of the printed product. These barriers are especially much highlighted in aerospace and medical device manufacturing industries where the high reliability and quality is needed. Selective Laser Melting (SLM) is one of the main metal 3D printing methods where it is known that more than 50 parameters are affecting the quality of the print. However, the current SLM printing process barely utilize a fraction of the collected data during production. Up to this point, no study to the best of our knowledge examines the correlation of factors affecting the quality of the print. After reviewing the current state of the art of process monitoring for metal AM involving SLM, we propose a method to control the process of the print in each layer and prevent the defects using data-driven techniques. A numerical study using simulated numbers is provided to demonstrate how the proposed method can be implemented.


2021 ◽  
Vol 1027 ◽  
pp. 136-140
Author(s):  
Sze Yi Mak ◽  
Kwong Leong Tam ◽  
Ching Hang Bob Yung ◽  
Wing Fung Edmond Yau

Metal additive manufacturing has found broad applications in diverse disciplines. Post processing to homogenize and improve surface finishing remains a critical challenge to additive manufacturing. We propose a novel one-stop solution of adopting hybrid metal 3D printing to streamlining the additive manufacturing workflow as well as to improve surface roughness quality of selective interior surface of the printed parts. This work has great potential in medical and aerospace industries where complicated and high-precision additive manufacturing is anticipated.


Sign in / Sign up

Export Citation Format

Share Document