Role of in situ added cellulose nanocrystals as rheological modulator of novel waterborne polyurethane urea for 3D-printing technology

Cellulose ◽  
2021 ◽  
Author(s):  
Julen Vadillo ◽  
Izaskun Larraza ◽  
Tamara Calvo-Correas ◽  
Nagore Gabilondo ◽  
Christophe Derail ◽  
...  
2020 ◽  
Author(s):  
Ruben Perez-Mañanes ◽  
Sonia García de San José ◽  
Manuel Desco-Menéndez ◽  
Ignacio Sánchez-Arcilla ◽  
Esmeralda González-Fernández ◽  
...  

Abstract Background 3D printing and distributed manufacturing represent a paradigm shift in the health system that is becoming critical during the COVID-19 pandemic. University hospitals are also taking on the role of manufacturers of custom-made solutions thanks to 3D printing technology. Case Presentation We present a monocentric observational case study regarding the distributed manufacturing of three groups of products during the period of the COVID-19 pandemic from 14 March to 10 May 2020: personal protective equipment, ventilatory support, and diagnostic and consumable products. Networking during this period has enabled the delivery of a total of 17,276 units of products manufactured using 3D printing technology. The most manufactured product was the face shields and ear savers, while the one that achieved the greatest clinical impact was the mechanical ventilation adapters and swabs. The products were manufactured by individuals in 57.3% of the cases, and our hospital acted as the main delivery node in a hub with 10 other hospitals. The main advantage of this production model is the fast response to stock needs, being able to adapt almost in real time.Conclusions The role of 3D printing in the hospital environment allows the reconciliation of in-house and distributed manufacturing with traditional production, providing custom-made adaptation of the specifications, as well as maximum efficiency in the working and availability of resources, which is of special importance at critical times for health systems such as the current COVID-19 pandemic.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Piero Cascone ◽  
Francesco D’Alessandro ◽  
Emanuela Gallo ◽  
Giuseppe Cicero ◽  
Valentino Vellone

2020 ◽  
Vol 6 (23) ◽  
pp. eaba7406 ◽  
Author(s):  
Yuwen Chen ◽  
Jiumeng Zhang ◽  
Xuan Liu ◽  
Shuai Wang ◽  
Jie Tao ◽  
...  

Three-dimensional (3D) printing technology has great potential in advancing clinical medicine. Currently, the in vivo application strategies for 3D-printed macroscale products are limited to surgical implantation or in situ 3D printing at the exposed trauma, both requiring exposure of the application site. Here, we show a digital near-infrared (NIR) photopolymerization (DNP)–based 3D printing technology that enables the noninvasive in vivo 3D bioprinting of tissue constructs. In this technology, the NIR is modulated into customized pattern by a digital micromirror device, and dynamically projected for spatially inducing the polymerization of monomer solutions. By ex vivo irradiation with the patterned NIR, the subcutaneously injected bioink can be noninvasively printed into customized tissue constructs in situ. Without surgery implantation, a personalized ear-like tissue constructs with chondrification and a muscle tissue repairable cell-laden conformal scaffold were obtained in vivo. This work provides a proof of concept of noninvasive in vivo 3D bioprinting.


2020 ◽  
Author(s):  
Ruben Perez-Mañanes ◽  
Sonia García de San José ◽  
Manuel Desco-Menéndez ◽  
Ignacio Sánchez-Arcilla ◽  
Esmeralda González-Fernández ◽  
...  

Abstract BackgroundPoint-of-care (POC) manufacturing and distributed production represent a paradigm shift in the health system that is becoming critical during the COVID-19 pandemic. University hospitals are also taking on the role of manufacturers of custom-made solutions thanks to 3D printing technology.Case DescriptionWe present a monocentric observational study regarding the distributed manufacture of three groups of products during the period of the COVID-19 pandemic from 14 March to 10 May 2020: personal protective equipment, ventilatory support, and diagnostic and consumable products.Discussion and EvaluationNetworking during this period has enabled the delivery of a total of 17.276 units of products manufactured using 3D printing technology. The most manufactured product was the face shields and ear savers, while the one that achieved the greatest clinical impact was the mechanical ventilation adapters and swabs. The products were manufactured by individuals in 57.3% of the cases, and our hospital acted as the main delivery node in a hub with 10 other hospitals. The main advantage of this production model is the fast response to stock needs, being able to adapt almost in real time.ConclusionsThe role of the manufacturing hospital allows the reconciliation of in-house and distributed manufacturing with traditional production, providing custom-made adaptation of the specifications, as well as maximum efficiency in the working and availability of resources, which is of special importance at critical times for health systems such as the current COVID-19 pandemic.


2020 ◽  
Author(s):  
Ruben Perez-Mañanes ◽  
Sonia García de San José ◽  
Manuel Desco-Menéndez ◽  
Ignacio Sánchez-Arcilla ◽  
Esmeralda González-Fernández ◽  
...  

Abstract Background Point-of-care (POC) manufacturing and distributed production represent a paradigm shift in the health system that is becoming critical during the COVID-19 pandemic. University hospitals are also taking on the role of manufacturers of custom-made solutions thanks to 3D printing technology. Case Description We present a monocentric observational study regarding the distributed manufacture of three groups of products during the period of the COVID-19 pandemic from 14 March to 10 May 2020: personal protective equipment, ventilatory support, and diagnostic and consumable products.Discussion and Evaluation Networking during this period has enabled the delivery of a total of 17,276 units of products manufactured using 3D printing technology. The most manufactured product was the face shields and ear savers, while the one that achieved the greatest clinical impact was the mechanical ventilation adapters and swabs. The products were manufactured by individuals in 57.3% of the cases, and our hospital acted as the main delivery node in a hub with 10 other hospitals. The main advantage of this production model is the fast response to stock needs, being able to adapt almost in real time.Conclusions The role of the manufacturing hospital allows the reconciliation of in-house and distributed manufacturing with traditional production, providing custom-made adaptation of the specifications, as well as maximum efficiency in the working and availability of resources, which is of special importance at critical times for health systems such as the current COVID-19 pandemic.


Medicine ◽  
2018 ◽  
Vol 97 (13) ◽  
pp. e9989
Author(s):  
Dong Hoon Lee ◽  
Tae Mi Yoon ◽  
Joon Kyoo Lee ◽  
Sang Chul Lim

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rubén Perez-Mañanes ◽  
Sonia García-de San José ◽  
Manuel Desco-Menéndez ◽  
Ignacio Sánchez-Arcilla ◽  
Esmeralda González-Fernández ◽  
...  

Abstract Background 3D printing and distributed manufacturing represent a paradigm shift in the health system that is becoming critical during the COVID-19 pandemic. University hospitals are also taking on the role of manufacturers of custom-made solutions thanks to 3D printing technology. Case Presentation We present a monocentric observational case study regarding the distributed manufacturing of three groups of products during the period of the COVID-19 pandemic from 14 March to 10 May 2020: personal protective equipment, ventilatory support, and diagnostic and consumable products. Networking during this period has enabled the delivery of a total of 17,276 units of products manufactured using 3D printing technology. The most manufactured product was the face shields and ear savers, while the one that achieved the greatest clinical impact was the mechanical ventilation adapters and swabs. The products were manufactured by individuals in 57.3% of the cases, and our hospital acted as the main delivery node in a hub with 10 other hospitals. The main advantage of this production model is the fast response to stock needs, being able to adapt almost in real time. Conclusions The role of 3D printing in the hospital environment allows the reconciliation of in-house and distributed manufacturing with traditional production, providing custom-made adaptation of the specifications, as well as maximum efficiency in the working and availability of resources, which is of special importance at critical times for health systems such as the current COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document