Cu10Sn to Ti6Al4V bonding mechanisms in laser-based powder bed fusion multiple material additive manufacturing with different build strategies

2022 ◽  
pp. 102588
Author(s):  
Chao Wei ◽  
Luchao Liu ◽  
Huatang Cao ◽  
Xiangli Zhong ◽  
Xu Xu ◽  
...  
Author(s):  
Chao Wei ◽  
Yuan-Hui Chueh ◽  
Xiaoji Zhang ◽  
Yihe Huang ◽  
Qian Chen ◽  
...  

Support structures are always associated with laser-based powder-bed fusion (L-PBF) processes, particularly for additive manufacturing of metallic components of complex geometry with overhang structures and for reducing component distortion. Existing L-PBF processes use the same material for both built components and support structures. Removing the metallic support structures from L-PBF fabricated components by the traditional post-treatment method is difficult and time-consuming. This paper demonstrates an easy-to-remove composite support material and related processing procedures in an L-PBF process. For additive manufacturing of 316L components, a SiC-316L composite was developed as a support material. This is combined with hybrid powder-bed and point-to-point selective powder deposition for the additive manufacturing of the components. A specific experimental multiple material L-PBF system was developed and employed to produce 316L components with SiC-316L composite as support structures successfully. An interfacial grid structure using 316L steel was used to avoid component contamination and inferior surface roughness of the 316L component. The experimental results demonstrated that the SiC-316L composite with 40 vol. % 320 grit SiC was feasible to be applied as a support material for 316L stainless steel component additive manufacture in a modified PBF system.


2020 ◽  
Vol 36 ◽  
pp. 101465 ◽  
Author(s):  
Yuan-Hui Chueh ◽  
Xiaoji Zhang ◽  
Jack Chun-Ren Ke ◽  
Qian Li ◽  
Chao Wei ◽  
...  

2021 ◽  
Vol 194 ◽  
pp. 110415
Author(s):  
Vera E. Küng ◽  
Robert Scherr ◽  
Matthias Markl ◽  
Carolin Körner

2021 ◽  
Vol 1 ◽  
pp. 1657-1666
Author(s):  
Joaquin Montero ◽  
Sebastian Weber ◽  
Christoph Petroll ◽  
Stefan Brenner ◽  
Matthias Bleckmann ◽  
...  

AbstractCommercially available metal Laser Powder Bed Fusion (L-PBF) systems are steadily evolving. Thus, design limitations narrow and the diversity of achievable geometries widens. This progress leads researchers to create innovative benchmarks to understand the new system capabilities. Thereby, designers can update their knowledge base in design for additive manufacturing (DfAM). To date, there are plenty of geometrical benchmarks that seek to develop generic test artefacts. Still, they are often complex to measure, and the information they deliver may not be relevant to some designers. This article proposes a geometrical benchmarking approach for metal L-PBF systems based on the designer needs. Furthermore, Geometric Dimensioning and Tolerancing (GD&T) characteristics enhance the approach. A practical use-case is presented, consisting of developing, manufacturing, and measuring a meaningful and straightforward geometric test artefact. Moreover, optical measuring systems are used to create a tailored uncertainty map for benchmarking two different L-PBF systems.


Sign in / Sign up

Export Citation Format

Share Document