alloy 718
Recently Published Documents


TOTAL DOCUMENTS

874
(FIVE YEARS 145)

H-INDEX

38
(FIVE YEARS 8)

2022 ◽  
Vol 34 (1) ◽  
pp. 012018
Author(s):  
Cory D. Jamieson ◽  
Marissa C. Brennan ◽  
Todd J. Spurgeon ◽  
Stephen W. Brown ◽  
Jayme S. Keist ◽  
...  

2021 ◽  
Vol 212 ◽  
pp. 110295
Author(s):  
Vitor Vieira Rielli ◽  
Flora Godor ◽  
Christian Gruber ◽  
Aleksandar Stanojevic ◽  
Bernd Oberwinkler ◽  
...  

2021 ◽  
Vol 35 ◽  
pp. 659-674
Author(s):  
Nageswaran Tamil Alagan ◽  
Pavel Zeman ◽  
Vladimir Mara ◽  
Tomas Beno ◽  
Anders Wretland

2021 ◽  
Vol 192 ◽  
pp. 109804
Author(s):  
Tom Sanviemvongsak ◽  
Daniel Monceau ◽  
Martin Madelain ◽  
Clara Desgranges ◽  
James Smialek ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5953
Author(s):  
Ahmad Raza ◽  
Eduard Hryha

Due to elevated temperatures and high vacuum levels in electron beam melting (EBM), spatter formation and accumulation in the feedstock powder, and sublimation of alloying elements from the base feedstock powder can affect the feedstock powder’s reusability and change the alloy composition of fabricated parts. This study focused on the experimental and thermodynamic analysis of spatter particles generated in EBM, and analyzed sublimating alloying elements from Alloy 718 during EBM. Heat shields obtained after processing Alloy 718 in an Arcam A2X plus machine were analyzed to evaluate the spatters and metal condensate. Comprehensive morphological, microstructural, and chemical analyses were performed using scanning electron microscopy (SEM), focused ion beam (FIB), and energy dispersive spectroscopy (EDS). The morphological analysis showed that the area coverage of heat shields by spatter increased from top (<1%) to bottom (>25%), indicating that the spatter particles had projectile trajectories. Similarly, the metal condensate had a higher thickness of ~50 μm toward the bottom of the heat shield, indicating more significant condensation of metal vapors at the bottom. Microstructural analysis of spatters highlighted that the surfaces of spatter particles sampled from the heat shields were also covered with condensate, and the thickness of the deposited condensate depended on the time of landing of spatter particles on the heat shield during the build. The chemical analysis showed that the spatter particles had 17-fold higher oxygen content than virgin powder used in the build. Analysis of the metalized layer indicated that it was formed by oxidized metal condensate and was significantly enriched with Cr due to its higher vapor pressure under EBM conditions.


Author(s):  
Marie Anna Moretti ◽  
Biswajit Dalai ◽  
Paul Åkerström ◽  
Corinne Arvieu ◽  
Dimitri Jacquin ◽  
...  

AbstractTo study the deformation behavior and recrystallization of alloy 718 in annealed and aged state, compression tests were performed using Split-Hopkinson pressure bar (SHPB) at high strain rates (1000 to 3000 s−1), for temperatures between 20 $$^\circ $$ ∘ C and 1100 $$^\circ $$ ∘ C (293 K to 1373 K). Optical microscope (OM) and electron back-scatter diffraction (EBSD) technique were employed to characterize the microstructural evolution of the alloy. The stress–strain curves show that the flow stress level decreases with increasing temperature and decreasing strain rate. In addition, up to 1000 $$^\circ $$ ∘ C, the aged material presents higher strength and is more resistant to deformation than the annealed one, with a yield strength around 200 MPa higher. For both states, dynamic and meta-dynamic recrystallization occurred when the material is deformed at 1000 $$^\circ $$ ∘ C and 1100 $$^\circ $$ ∘ C, leading to a refinement of the microstructure. As necklace structures were identified, discontinuous recrystallization is considered to be the main recrystallization mechanism. The recrystallization kinetics is faster for higher temperatures, as the fraction of recrystallized grains is higher and the average recrystallized grain size is larger after deformation at 1100 $$^\circ $$ ∘ C than after deformation at 1000 $$^\circ $$ ∘ C.


Author(s):  
Amir Malakizadi ◽  
Tina Hajali ◽  
Fiona Schulz ◽  
Stefan Cedergren ◽  
Joakim Ålgårdh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document